
Strudel - An Extensible Electronic
Conversation Toolkit

Allan Shepherd, Niels Mayer, Allan Kuchinsky

Hewlett-Packard Laboratories
1501 Page Mill Rd
Palo Alto, California 94304.
shepherd@hplabs.hpl.hp.com

ABSTRACT

This paper describes the conceptual model of Strudel, a toolkit of generic components for
conversation and action management. To empower work groups to more effectively
conduct their computer-based communication, coordination, and information sharing
activities, Strudel packages within a simple model of task and action the semi-structured
message, active message and conversation management paradigms. To facilitate
acceptance and use within varying work cultures, we define this model in terms of a set
of extensible components, which are implemented as a prototype software toolkit that is
efficient, portable, customizable, and extensible. Issues considered briefly in this paper
include threading in conversations that are converging or multi-party, and interoperability
between active message systems.

INTRODUCTION

Our project is investigating the potential for achieving better management of computer-
based conversations in work groups through technologies that enable teams to capture
and structure discourse. We believe this to be useful for work groups engaged in
specialized, recurring conversations, where building specific conversational structures for
certain tasks allows them to more effectively coordinate their activities when carrying out
these tasks. Examples of such specialized conversations include coordination of software
engineering activities and deliberation of system design issues.

Many work groups within Hewlett-Packard routinely use computer-based conversations
to deliberate on design decisions [Fafc90], to track and follow up on negotiations and
agreements, and to schedule their activities. These work groups have evolved ad hoc
structures and conventions to carry out specialized conversations which include the use of
specialized mail templates and incorporation of the mail system within applications, e.g.
to send notification messages in a software defect tracking system.

To enable users to more easily integrate the usage of computer-based conversations into
other electronically supported work, we are exploring more systematic mechanisms for
structuring computer-based conversations. The current focus of Strudel is on how users
can interactively carry the state of each conversation or task forward, rather than on
automated response to events; for example when a user replies to a message, or marks an
action item in a task as “Done.”

Overview of the Technical Approach

Strudel provides a toolkit of components for end-users to manage electronic mail (e-mail)
based conversations and action items. This paper describes the design of the toolkit
components, with examples from the current prototype. To facilitate acceptance, the
toolkit emphasizes standards, user-extensibility of toolkit components, interoperability

CSCW 90 Proceedings October 1990

93

with existing applications, and good run-time performance on widely installed platforms.
It is compatible with existing practice, for example it has a similar look and feel to
existing e-mail user agents. It is aimed at producing a small, fast and portable
C-implemented platform that enables delivery of groupware applications on relatively
low-cost graphics workstations running industry standard software - UNIX,’ the X
Window System (Version 11) [Sche88] and ARPA Internet mail [Post82]. User-
acceptance of Strudel is further addressed through its use of the graphical interface
provided by the OSF/Motif UI Toolkit [Moti90]. To support tailoring, Strudel provides
an extension language which is based on Winterp [Maye90].2 An early experimental
prototype of Strudel was demonstrated at the IFIP Groupware Technology Workshop
[Shep891.

As a starting point, we have integrated the main features of other conversation
management systems into a simple conceptual model. This builds upon work on e-mail
user-agents that support message filtering ERose86, Bore881, and work on semi-structured
message systems [Malo86], and conversation management [Wino87, Come86, Do1189,
Sulo90, Kapl901. Strudel contains a library of components which include user-
customizable definitions for conversations, conversational moves, actions, action items
and notifications. Presenters allow viewing, editing and navigating among these objects.

Previous work [Ma10861 has focussed on making the flood of incoming electronic mail
manageable through sup
presentation in browsers, f

ort for the rules that filter messages into message classes for
and for actions that can be applied to messages in a class, such

as “forward all messages from X to Y .” Strudel complements this work by focussing on
facilities that will help users (within groups) add partial structure and actions to messages
while messages are being composed. Strudel supports this addition of structure to
messages during composition by providing a library facility in which user-extensible
types for message and conversation components are managed.

In Strudel, messages can contain typed conversational moves, such as a “Request,” as in
Conversations for Action [Wino87]. We use the name conversational move, rather than
message “type,” since messages are allowed to contain more than one such “move,” and
to emphasize that each move may suggest next moves that are typically taken by other
parties in a conversation. A move may havefields, as in semi-structured messages. For
example, a “Request Meeting” move may have date, location, and topic fields. A move
may contain actions, for example, the “Request Meeting” move may contain an “Add to
To-Do List” action. which may access the move’s fields. Users draft messages by
selecting a move from a top-level menu, or via buttons, menus or lists of items displayed
in previous messages.

Messages are collected into conversations based on the threading between successive
conversational moves. Conventional electronic mail messages and Strudel messages may
be freely inter-threaded within conversations. Conventional electronic mail messages are
traced to a predecessor message using existing “In-reply-to:” or “Subject:” field entries

lUNIX is a trademark of AT&T.

2Winterp was released on the Xl lr4 tape - it provides an interactive object-oriented
interface to the OSF/Motif UI Toolkit, using XLisp’s light-weight interpreter and object
system.

3This filtering is based either on explicit message typing, or some pattern matching with
the content of message fields. In semi-structured message systems, the sub-structure in
the message body is used to simplify how the user defines predicate matching. It is also
used to allow actions on the messages to interpret particular fields. The utility of these
systems depends on their ability to classify incoming messages and on the actions that
can be applied to these classes of messages;

CSCW 90 Proceedings October 1990

94

where possible. Pseudo-conversations [Come86], i.e. collections of messages with the
same topic, or sender, etc, will be supported. Actions can be applied to messages
classified into pseudo-conversations, for example, an action “Request an item from
library” may be defined for a class of messages that contain lists of new library
aquisitions.

Strudel differs from previous approaches in that users can dynamically evolve
conversational move and conversation type definitions. Therefore these definitions can be
made task specific. For example a user may create a new conversational move type “Ask
who is responsible for repairing a medical instrument defect.” The user may then add this
move as an initial move type in a “Medical Instrument Defect Repair” conversation type.
However there is currently little support for integrating new definitions of moves or
conversations into a centralized library, as would be necessary to support COSMOS style
scripts. Unlike more complex office procedure and task modelling systems [Deci86,
Ishii89, Krei891, Srrudel supports only simple scripts to help end-users select and draft
next moves in conversations and tasks4

The actions supported on messages and other objects can also be made task specific. An
interface to other tools is supported so that actions specified within conversation and task
objects can initiate operations on objects managed by other tools. In particular, simple
programmatic interfaces to general purpose applications such as a room reservation
system, and to domain specific coordination tools such as software maintenance and
defect tracking systems, can be defined. For example, a “Request meeting” message may
have an action “Make room reservation” - this action could invoke an operation in a
room reservation application.

To allow users to tie the message system into the state of their tasks, users can create
action items in Strudel. Action items are memos created by a user to describe an activity
they intend to carry out, and the status of that activity. For example, a software
development engineer may create an action item to note an intended defect repair, its
priority, etc. In addition, to inform Strudel users of an event in an external tool, a special
kind of action item, named a notification, can be created by a call from the tool.
Analogous to messages in conversations, action items are represented as semi-structured
typed forms and threaded into tasks. Action-item forms are distinct from actions.

The evolution of message and conversation types is decentralized and done by individual
users, but is expected to be mediated through a group’s discussion and acceptance of
modified types. Thus as groups adopt methodology or protocols for their work process,
they may choose to represent some conversation and task activities in Strudel. Strudel
does not advocate particular protocols but rather tries to provide ways for groups to
support their protocols of choice, and to allow groups to informally integrate and then
specialize these.

Strudel conversation types do not restrict the types of next moves that can be made;
therefore different conversation types can be freely initiated at any point in a
conversation. For example, a “Request meeting” or a “Post design issue” move can be
sent in response to a “Defect notification” received in the defect resolution conversation.

Example of Usage

Detailed application scenarios have been developed with potential users. To support the
scenarios prototyped so far, several conversation types have been defined in the library.

4Expert users ca n define complex task actions in Strudel by writing interpreted
procedures in Winterp [Maye90].

CSCW 90 Proceedings October 1990

95

These include a conversational IBIS5 used for design issues discussion, a Conversation
for Action [Wino871, meeting scheduling, and software defect tracking and repa%.

Throughout the paper, a defect resolution scenario is used to give examples. In this
scenario, a software build system notifies Strudel that a defect in a product assembly was
found. A software technician responsible for the build process uses Strudel to read
pending notification reports. The defect notification is presented as a graphical form.
Buttons on the form allow the software technician to draft and send specific types of
messages, for example, a message to ask several development engineers if they know
who is responsible for handling the defect. One development engineer responds to this
message, by sending a message agreeing to “own” the defect. The development engineer
also starts the repair process by pressing another button on the message form to create an
initial action item form for the repair task. Later the development engineer starts a related
conversation by posting to other engineers a message that raises a design issue
concerning the reported defect. From the action item form the engineer may access
copies of related defect notifications from the software build system, other mail messages
concerning the defect, and the status of the defect repair (as communicated to Strudel by
the software maintenance tools).

CONCEPTUAL MODEL

The basic types in Strudel’s abstract computational model are described in this section,
first in overview, then in more detail. Conversations and tasks are composed of
collections of messages and action items, respectively. A message is used to carry
conversational moves, for example the move “Request to repair a defect.” Conversational
moves typically suggest next conversational moves and present actions that can be
executed by the message’s reader. For example the “Request to repair a defect” move
suggests “Agree to repair a defect” as a next conversational move. Conversation types
and task types can be defined to guide the way that conversations and tasks are started,
developed and ended. For example, a defect resolution conversation defines as initial
moves either a “Request to repair a defect” or a question asking “Are you the right person
to handle this defect?” A defect tracking task is started either when a notification of a
defect is reported to Strudel by an external tool, such as a product build system, or when a
user creates a “Repair Defect” action item. Figure I sketches the basic relations between
Strudel’s abstract types, and shows example moves from a defect resolution conversation.

The basic types conversational-move, action-item and notification are subclasses of a
root type, namely task-move. Instances of these types have a title, optional fields, and
actions that the user can apply in the context of the move. Figure 2 shows an example
Motif form for a simplified “Repair Defect” action item. Figure 3 shows the type
definition for this action item. The type definition in the user’s local library supplies
default field and action information when the action item is instantiated by the user.

Notifications are treated as pseudo action-items in that they are not instantiated by users
but rather in response to a call from an application; otherwise they have the same
properties as action items. Figure 4 shows an example notification created by a call from
a software build tool to inform the user of a defect.

5We introduce a conversation type based on the Issue Based Information System (IBIS)
methodology [Wem70]. Issues and Positions are sent as specialized messages to others
in the design team rather than being added to an argumentation database as in a typical
IBIS.

CSCW 90 Proceedings October 1990

96

lnotiyon 1 1 actTm] conversational-move
type

/resolve-d$ect-\ initfal move
conversauon

agree-to-
own-defect

type

Figure 1. Conversation and move type hierarchy

Actions that are specific to a move type can be defined.6 These are attached to buttons
when the move is presented, for example the “Initiate Repair” button in Figure 2. Actions
defined for moves can be used, for example, to draft action items or next conversational
moves. Actions defined on fields can be used for example to confii that a time is free
in a calendar or schedule. Actions can also be user-defined to invoke task specific
operations on task objects. For example, an action7 that posts an engineering change
order to the design history of a product may be implemented by calling an interface to a
production management and inventory control system. An action to retrieve a defective
software module may be implemented by a call to a software maintenance tool.
Depending on whether a move is being drafted or read, different actions may be
presented as specified in the move’s type definition. For example the draft message
shown in Figure 5 is presented with no actions; whereas the same message when
reviewed by the recipient, is presented with the action “Create action item for Defect
Repair,” as shown in Figure 6. Definitions for actions are given in the recipient’s library,
or a definition of the action is sent in the message (in this sense messages are self
describing).*

A conversational move may be semi-structured. In this respect, a move is similar to a
“semi-structured message” [Malo86]. In Strudel, moves are semi-structured in the sense
that each move has a structure composed of fields, but the contents of the fields are not
structured. Users can fill in as much or as little information in the fields as they wish, and
the information in a field is not necessarily of any specific type. When drafted,
conversational moves are inserted into an e-mail message to be sent to other users, A
message may contain several moves. A type definition for a conversational move can
specify an explicit sequence of suggested next conversational move types, and a preferred
or default one. For example, in the message shown in Figure 6, the user is presented with
the choices “I am,” etc. Figure 7 shows the type definition for this move.

6For convenience, conversational moves, action items, and notifications are referred to as
moves or task moves (as instances of the tusk-move type).

7These actions are specified as Winterp procedures.

%f an action definition is not present locally, Strudel will request a copy of the action
definition from the message’s sender or from the group’s server.

CSCW 90 Proceedings October 1990

97

Messages are threaded into one or more conversations. A conversation consists of an
opening and the successor messages to the initial message. The opening specifies the
participants, the initial message, and so forth. A user starts a new conversation by
selecting a conversational move type to instantiate. This selection is made either from the
“Start conversation” top-level menu, or in the context of an existing action item or
notification. For example, the initial move “who-will-handle-defect” (shown in Figure 5)
is selected from a menu on the “Compose msg” button in the notification shown in Figure
4. The user then edits and sends the message. In responding to a message, users send
successor moves thus extending the conversation. A conversation is just this collection of
successor messages and the opening descriptor.9 Users may copy and join the
conversation.

I .--.- . ..-.- ---. - - B... ..-. -.- . . .

I..-!. . .- . . .I..,., -: .,. . ,,c’,rl. - I’ . - -:-,‘.. -

Figure 2. Drafting a “Repair Defect” action item

(register-task-move-type ‘make-repair
:title “Repair Defect”
:intro “REPAIR DEFECT:”
:field-sequence ‘(review repair-location status design-issues who)
:action-types ‘(‘(start-repair “Initiate Repair”)

‘(inform-clients “Inform repair status to clients”)
‘(note-in-progress-report

“Add to Progress Report: change in repair status”)))

Figure 3. A type definition for the “Repair Defect” action item

%n the current prototype, Strudel implements the conversation opening by including a
conversation id in the message with the initial conversational move. This id is quoted in
responding messages.

CSCW 90 Proceedings October 1990

98

. .‘.,m . :
/.:;- ..::‘:’ ;.: --:._: “:, .,’_,- .:.,... ::‘.-... .-.... - . ..-

I

. _-.-. .,
. .\m.:

%&.a--

Figure 4. A received notification

. . . - . ..-..... . . . -.. -... -.. . . -...-. - . --.-.. . . -... -
i
!p- f--‘-‘--’

. . . -- - . . - - 1 i :-. __. -. - _ - .-. .Y-lII:-..-~:-.-
. -

mm- J -d -.m-;
- .

i-
--- --

r”.-‘-“--.- -.-..-m-B-.-..----.--- . .-.. -
: 1 . .1-a .C I
i

. L .I I m

:,..m l .

-.-

I c mn . -z m-i’ .:

-.- --.-.-------.-.-
. .

: Wm. .-. , .1
. . . . I . l - ,I 1:. I.

1

.-. -.- - -. - mm - -m - - - - -

-1 .,
I ’ ..q’lc I rl. .-.I .-•

Y a- 111 -.,a .I a.- a-., .Y mIm,,,-“1II-. I-Y..,II,Y”.,,LY llyll h.. a.111 .,a11111 .YY, II Ih

Figure 5. A draft conversational move

Specialized actions for a conversational move allow a user to navigate to the previous and
predecessor moves in the conversation, lo and to linked action items and notifications.
Given the ability to navigate, a graphical network of the moves in a conversation can be
displayed. Figure 8 shows some of the moves in the defect resolution scenario - the
highlighted moves were made; dashed links connect these to moves that could have been
made.

A tusk is a collection of action items or notifications that is generated from the initial
action item or notification of the task. This is analogous in structure to a conversation,
that is generated from an initial conversational move. A conversation is treated as a
specialized task. Conversation types and task types specify a set of initial move types.
Menus of the initial move types declared in conversation and task types are currently used
to start new conversations and tasks. Task and conversation types may also specify how
next moves are to be drafted, as described in the section “Drafting Messages”, below.

lOTo allow users to navigate to a previous message which has been lost or deleted, a
control move can request a copy of a message to be forwarded, as in Dragon [Come86].

CSCW 90 Proceedings October 1990

99

CSCW 90 Proceedings

‘:!.:I :: ‘,pn.r ,, ! I... ,‘r- I,-. !-PI-; 1. !.rl.m:
. II

I-*-~.---~*~~-~...~..-

Figure 6. A received conversational move

(register-conversational-move-type ‘who-will-handle-defect
:title “Defect owner?”
:intro “Are you the best person to handle this defect?”
:utterance-sequence ‘(defect comment)
:preferred-response-action-type ‘other-may-handle
:next-conv-move-types ‘(‘(i-will-handle-defect “I am”)

‘(other-may-handle “Other person”)
‘(do-not-know “Don’t know”))

:action-types ‘(‘(make-repair-action “Create action item for Repair Defect”)))

(send who-will-handle-defect :set-field ‘defect
:label “Defect”
:presentation ‘(string 80 50)
:read-actions ‘(prev-move prev-event summary))

Figure 7. A conversational move type definition

Several default presentations of tasks and conversations are provided, including browsers
for various classes of action items, notifications, and messages. A simple message
browser, which resembles current e-mail browsers, allows conventional e-mail messages
and Strudel messages to be presented. To present Calendar and “To-Do list” views,
browsers will allow users to sort, filter and group action items and messages based on
relations for time and keyword matches. For example, messages can be sorted by time
sent, grouped by participants, etc. Conversation browsers allow users to navigate within
conversations, to archive conversations, etc.

Users can define overview presentations for conversations and tasks. Defaults will be
indented outlines or simple graphs, as in Figure 8, showing the ordering of moves taken
and available. Particularly within a typed conversation or task, a procedure can draft a
simplistic specialized summary of the conversation or task, for example by assembling
from specific fields in several messages a draft of a project’s progress report, or the
minutes or agenda of a meeting. In the defect resolution scenario, a summary form links
related defect reports, a repair status summary, clients waiting for the repair, and so forth.

Drafting Messages

When a user reads a message containing a conversational move, the user can draft a next
conversational move, based on the type and content of a predecessor move. The user
chooses a next move type from those suggested in the current move or from other library-

October 1990

100

defined types, or can send a message containing an untyped move, or can create a new
type to use. Conversation types can be extended on the fly by users defining new move
types as “next-conv-move-types” in existing move types. In a similar way task types may
be defined and evolved.

.

. . c : :.

, m.:*.:r - ..-. - ..c: : r:t .: . .

-. ‘-: .-. - . . . ,I.. ‘I
(. . . -1. .* l

. . . -
. . .

’ -.

. \

\ . .* . .

‘Q

/*

:

I ’ :

- ..m . . . :,
,...:. .I.. . . : i

-I. . --‘I.

1

Figure 8. Conversation graph

In the current interface to Strudel, the possible next move types are presented via buttons
or menus. When reading a received message, the user presses a button to select a next
move type. In the defect resolution scenario, Figure 6 shows buttons labelled “I am,”
“Other person” and “I don’t know.” A default next move type can be set by the sender of
the message, perhaps to indicate a preferred choice which may express a methodology or
policy, or just to set a default focus for the discourse. The user chooses either to edit the
next move, or to send a default move of the selected type. This next move is “in response
to” the current move. This is analogous to the threading created by conventional “in-
reply-to” e-mail messages; however the “in response to” move may be addressed to
anyone, thus allowing other parties to be entered into the conversation at that point.tl
For example, on receiving a problem description, a user may ask for separate solutions to
the problem by sending separate requests to distinct parties.

In order to support drafting of messages using the content of several previous messages,
as when summarizing or comparing the content of several previous moves (perhaps from
different parties), a message can contain a move which may be “in response to” several
moves in several predecessor messages. For example, a “Request to meet” may include
agenda items derived from design issues raised in several previous messages. We will
need to provide ways for users to at least manually reorder and merge fields in the newly
drafted message, in much the same way that users currently cut and paste text when
summarizing several previous messages in current interfaces.

Issues

The computational context in which a next conversational move is drafted is dominated
by the conversational model. At first glance it appears necessary to support a context
containing multiple immediate predecessor moves, in order to thread converging
conversations. In order to develop as simple a model as possible, we provided in the
current prototype a drafting context that contains only a single immediate predecessor
move -the move that the new move is explicitly “in response to.” In drafting new

1 1 Making a particular move “in response to” a move in a conversation does not prevent
the user from making other moves also “in response to” the move. However, the
subsequent moves are made “within the sequence of’ previously made moves, as in
Dragon.

CSCW 90 Proceedings October 1990

101

moves, only data in this context are usually accessed, for example in copying the topic of
an agenda item or the date of a meeting into a next move. A draft could reflect the state
of other moves in the conversation, since other moves can be retrieved given the current
move. However, as another means of keeping the model simple, the state of moves in
each conversation is currently represented only in each move’s state; it is not represented
in any global state for the conversation or specific to the conversation type.

In conventional office forms systems, the text labels on fields and buttons are fixed. In
Strudel, users can easily change the surface text of labels and the default field contents,
for example to change the degree of formality in the displayed introductory text. A
number of issues arise with this flexibility. The advantage that fixed forms can be
understood quickly by the reader is lost. Misunderstandings may be caused by small
changes made by a sender since there is the same lack of cues as in conventional e-mail.

An important issue is the development of a framework for interoperability among
conversation management systems and coordination systems mi88]. Our initial practical
approach to this problem has been to design Strudel to permit experimental interoperation
with conventional “unstructured” e-mail, and other prototype conversation management,
active message or coordination systems. l2 We have defined conversational move typing,
the addition of fields, and actions orthogonally to each other. This will allow Strudel to
experimentally interpret messages from other systems that may support one or more of
these features. For example, a particular application may send only semi-structured
messages, or only unstructured typed messages such as a “Request,” or active structured
messages. A key issue is providing interoperable references to and descriptions of
actions (in messages). For example, if there is a meeting date field in a message, users
would like to be able to apply their local definition of an Add-to-Calendar action so that
appropriate entries are made in a local calendar, irrespective of the source of the meeting
announcement.

CONCLUSION

We have described the conceptual model of the initial Strudel toolkit, and its approach to
user extensibility of conversation and task objects. We intend for Strudel users to
gradually evolve groupware extensions to their current work practices by adding semi-
structured messages, active messages and conversation management tools as features
available in a system that “feels” like a traditional e-mail user agent.

The prototype demonstrates that the basic functionality of Strudel can be provided in a
small, fast package that is portable, customizable and extensible. With this prototype we
will be able to investigate the value to actual user groups of this approach to extensible
conversation management. Design and usability issues that we are exploring include the
ease of adoption of conversation structuring by work groups, identification of the
appropriate “units” of conversation to support, striking the proper balance between user-
driven and technology-driven design, integration of computer-based conversations with
other collaboration and communication mechanisms in work groups including the use of
multi-media, and identification of classes of conversations most appropriate for machine
support.

Acknowledgements

Thanks to Susan Brennan, Mark Corscadden, Danielle Fafchamps, Martin Griss, Lars-
Erik Hammarin, Nancy Kendzierski, Scott McGregor, Bonnie Nardi, Vicki O’Day, Steve
Whittaker and David Williams for helpful discussions.

12Lee discusses this [Lee891 from the perspective of communication using typed
messages.

CSCW 90 Proceedings October 1990

102

BIBLIOGRAPHY

[Bore881 Nathaniel S. Borenstein and Chris A. Thyberg. Cooperative work in the
Andrew message system. In Conf. on Computer-Supported Cooperative
Work, pages 306-315,1988.

[Come861 D. Comer and L. Peterson. Conversation-based mail. ACM Transactions
on Computer Systems, 4(4):299-319, November 1986.

[Deci86] F. De Cindio, G. De Michelis, C. Simone, R. Vassallo, and A. Zaboni.
CHAOS as coordination technology. In Conf. on Computer-Supported
Cooperative Work, pages 325-343,1986.

[Doll891 Jean Dollimore and Sylvia Wilbur. Experiences in building a
configurable CSCW system. In Proc. 1st European Conf. on CSCW, pages
215-225, September 1989.

IIFafc901 Danielle Fafchamps, Dave Renolds and Allan Kuchinsky. The dynamics of
small group decision making over the e-mail channel. To appear in
Studies in Computer Supported Cooperative Work: Theory, Practice and
Design, ed. J. Bowers and S. Benford. Elsevier.

[Ishii89] Hiroshi Ishii and Kazunari Kubota. Office procedure knowledge base for
organizational office work support. In B. Pemici and A. A. Verrijn-Stuart,
editors, Office Information Systems: The Design Process. Elsevier, 1989.

[Kapl90] Simon Kaplan. COED: A conversation-oriented tool for coordinated
design work. In Proc. IFIP Int. Workshop on Human Factors in Information
Systems, June 1990.

lJVem701 Werner Kunz and Horst Rittel. Issues as elements of information systems.
Technical Report, Inst. of Urban and Regional Development, Univ.
California, Berkeley, July 1970. Working Paper No. 131.

[Krei89] T. Kreifelts, F. Victor, G. Woetzel, and M. Woitass. A design tool for
autonomous group agents. In Proc. 1st European Conf. on CSCW, pages
204-214, September 1989.

D-=891 Jintae Lee. How can groups communicate when they use different
languages? Translating between partially shared type hierarchies.
Technical Report SSM WP 3076~89-MS, MIT, September 1989.

l&Ii883 Kum-Yew Lai and T. Malone. Object-Lens: A spreadsheet for
cooperative work. In Conf. on Computer-Supported Cooperative Work,
pages 115-124, September 1988.

Mw901 Niels Mayer, Allan Shepherd and Allan Kuchinsky. Winterp: An object-
oriented rapid prototyping, development and delivery environment for
building extensible applications with the OSF/Motif UI Toolkit. In Proc.
Xhibition-90 X Window System and Open Systems Technical Conf.erence,
pages 49-64, May 1990

[Malo86] T. Malone, K. Grant, K. Lai, R. Rao, and D. Rosenblitt. Semi-structured
messages are surprisingly useful for computer-supported coordination.
In Conf. on Computer-Supported Cooperative Work, pages 102-114,
December 1986,

CSCW 90 Proceedings October 1990

103

[MotiBO] Open Software Foundation. OSF/Motif Series, 1990. Prentice-Hall.

lI’ost82] J. B. Pastel. Standard for the format of ARPA Internet text messages,
requests for comments 822. Technical Report SRI-NIC RFC-822, Stanford
Research Institute, August 1982.

[Rose861 M. T. Rose and J. L. Romine. The Rand MH message handling system:
User’s manual, UC1 Version 6.5 12. Univ. of California, December 1986.

[Sche88] Robert Scheifler, James Gettys and Ron Newman. The X Window System:
C Library and Protocol Reference. DEC Press, 1988

[Shep89] Allan Shepherd, Niels Mayer, and Allan Kuchinsky. Strudel: An
electronic conversation toolkit. Technical Report STL-89-04, Hewlett-
Packard Labs, Palo Alto, CA 94303, August 1989.

[S ulo90] Reijo Sulonen and Panu Pietikainen. Forget-Me-Not - Controlling
intercompany operations by intelligent mail. In Proc. 23rd Hawaii Int.
Conf. on Systems Sciences, pages 428-435,1990.

[Win0871 T. Winograd. A language/action perspective on the design of cooperative
work. Technical Report STAN-CS-87-1158, or CSLI-87-98, Stanford
University, 1987.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791402-3/90/0010/0104 $1.50

CSCW 90 Proceedings October 1990

104

