
T h e W I N T E R P W i d g e t I N T E R P r e t e r A L i s p

P r o t o t y p i n g a n d E x t e n s i o n E n v i r o n m e n t f o r O S F / M o t i f -

b a s e d A p p l i c a t i o n s a n d U s e r - I n t e r f a c e s .

Niels P. Mayer (mayer@hplabs.hp.com)

Hewlett-Packard Laboratories
Human-Computer Interaction Department

1501 Page Mill Road
Palo Alto, CA. 94304-1126

USA

ABSTRA CT

Winlerp is an interactive, language-based user-interface and application-construction environment
enabling rapid prototyping of applications with graphical user interfaces based on the OSF/Motif UI
Toolkit. Winterp also serves as a customization environment for delivered applications by providing a
real programming language as an extension language. Many existing user-interface languages only
have the expressive power to describe static layout of user interface forms; by using a high-level
language for extensions and prototyping, Winterp also handles the dynamic aspects of UI presenta-
tion, e.g. the use of direct manipulation, browsers, and dialog. Win¢erp makes rapid prototyping pos-
sible because its language is based on an interpreter, thereby enabling interactive construction of
application functionality and giving immediate feedback on incremental changes.

Win¢erp's language is based on David Betz's public domain Xlisp interpreter which features a subset
of Common Lisp's functionality. The language is extensible, permitting new Lisp primitives to be
added in the C language and allowing hybrid implementations constructed from interpreted Lisp and
compiled C. Hybrid implementation gives Win¢erp-based applications the successful extension and
rapid-prototyping capabilities of Lisp-based environments, while delivering the multiprocessing perfor-
mance of C applications running on personal Unix workstations.

1. I n t r o d u c t i o n

Win*erp 1 is a Widget 2 Interpreter, an application development environment enabling rapid prototyping of graphical
user-interfaces (UI) through the interactive programmatic manipulation of user interface objects and their attached
actions. The interpreter, based on David Betz's Xlisp [Betz89], provides an interface to the Xl l toolkit Intrinsics (Xt), the
OSF/Motif 3 widget set [OSF90] [Young90], primitives for collecting data from Unix 4 processes, and facilities for interact-
ing with other Unix processes. These features enable Winferp to support rapid prototyping of applications using multi-
window graphical user-interfaces by allowing the user to interactively change both the appearance and functionality.

In addition to prototyping applications and experimenting with UI layout, Win*erp may be embedded in applications
requiring an extension language for customization or systems integration. Traditional X applications based on the Xtoolkit
allow users to alter X resources to tailor application UI parameters such as fonts, colors, window sizes, etc. Motif's User
Interface Language (UIL) [OSF90] [Bourne90] extends that level of customization by allowing the layout of the
application's UI widgets to be tailored. As a language, UIL has the expressive power to describe the layout of static UI
forms, but has none of the control flow and data handling constructs associated with real programming languages. A pro-
gramming language is needed to support the full range of requirements needed by User Interface Management Systems
(UIMS) [Myers89]; to describe dynamic, data-driven UI forms, and to model user/application dialog. Win*erp provides
such an embedded programming language allowing tailoring of the UI's static and dynamic layout, UI-to-application dia-
log, and application functionality.

1 Winterp is pronounced WIN-TERP, not WINTER-P .

2 A Widget is a graphical object that can be manipulated by mouse or keyboard input: examples of OSF/Mot l f widgets include scrollbars,
pushbut tons , menus, text editors, etc.

s Motif is a t rademark of the Open Software Foundat ion.

4 Unix is a t rademark of American Telephone and Telegraph, Bell Laboratories.

O copyright 1990 Niels P. Mayer of Hewlett-Packard Laboratories ---
IV- i. 45

Winterp is thus an interactive "language based" user-interface development environment (UIDE). Winterp is not a UIMS
- - it provides UI primitives and a high-level language to support a wide variety of UI-to-application partitionings 5 that
are characteristic of the UIMS approach. Winterp is designed to allow the programmer to evolve a suitable UIMS model
that is appropriate for extending and customizing a particular application. Winterp is also designed to support direct
manipulation UI building. The current version contains a useful primitive for "direct manipulation programming" with
widget-objects.

An environment similar to Win~erp's already exists in the GNU Emacs [Stallman87] text editor - - in fact, Win~erp is
strongly influenced by GNU Emacs' successful design. In GNU Emacs, a mini-Lisp interpreter is used to extend the editor
to provide text-browser style interfaces to a number of Unix applications (e.g. e-mail user agents, directory browsers,
debuggers, etc). Whereas Emacs-Lisp enables programmers to create new applications by tying together C-implemented
primitives that operate on first-class types providing textual interfaces (buffers, windows), Winterp-Lisp ties together
operations on graphical user-interface objects implemented by the Motif widgets. Both application construction environ-
ments achieve the flexibility, expressiveness, and rapid-prototyping capabilities common for systems implemented in Lisp,
while still attaining the speed of execution and (relatively) small size associated with C-implemented applications.

Winterp was initially made public on the MIT X Consortium's Xl l r4 "contrib" distribution; up-to-date versions are avail-
able via anonymous ftp from a number of Internet sites including expo.lcs.mit.edu. Winterp is quite robust and bug-free,
it is in active use by a number of research projects at HP Labs, and is also being used by companies and universities
worldwide. Winterp was designed to be portable - - it runs on "standards-oriented" Unix platforms without porting. A
number of improvements have already been contributed by Winterp's user group since Winterp's initial public release; sub-
mitted improvements will be included in publicly available updates of Winterp.

2. B a c k g r o u n d

2 . 1 . D e s i g n C o n s t r a i n t s

Winterp was created as the platform on top of which the "Collaborative Interaction Tools" project at Hewlett-Packard
Laboratories is developing Strudel [Shepherd90], an extensible electronic conversation toolkit enabling computer supported
cooperative work. The design of Strudel has resulted in strong constraints on Win~erp: for development, we required an
environment supporting rapid prototyping and exploratory programming; for delivery to end-users, Strudel had to allow
extensive customization in order to fit in to a particular group's computer-based work environment; finally, to allow us to
validate our groupware design, the platform must be acceptable to "early adopters" wanting to use Strudel in real work
situations. Unlike traditional software, groupware cannot be evaluated by individual beta-testers - - the power of
groupware comes from having a number of people using it to work together. In order to gain this wide experimental user
base, we found it necessary to place additional constraints on the platform: it needs to be freely distributable, easy to
install, and it must have good performance when running alongside other applications on a standard Unix workstation. In
this paper, we discuss the design of Winterp with such constraints in mind, pointing out the advantages of Winterp as a
general platform for application prototyping and delivery.

2 . 2 . S t r u d e l - - A C u s t o m i z a b l e A p p l i c a t i o n B a s e d on W i n t e r p

Strudel is a generic framework for interlinking group e-mail conversations and group or individual tasks. Strudel consists
of Winterp's interpreter and user interface primitives, combined with primitives implementing a distributed hypertext-like
system using replicated e-mail messages as nodes, and high-level operators that will allow the nodes to be viewed-by and
linked-to a variety of browsers (e.g. conversation presenters, task and to-do lists, calendars). Slrudel's flexible architec-
ture makes it akin to a "GNU Emacs for groupware" - - the specialized primitives permit the system to be customized to
support special modes of communication for particular workgroup environments much in the same way that GNU Emacs
Lisp is used to customize the editor to support special editing modes for particular programming environments.

Users will be able to choose from a library of e-mail forms that are designed to track specific types of conversations - -
scheduling meetings and resources, software defect tracking, group design deliberation, etc. Workgroups can extend the
library of forms to help capture and manage recurrent conversations that are not covered by Slruders standard forms
library. The kinds of interface customizations can range from adding new menu entries for often-used functions to design-
ing new e-mail forms and associated browsers for their data. We are working closely with a few HP entities to provide
Winterp-Lisp "scripts ''6 implementing specific scenarios involving conversations arising in the domain of team software
and hardware production: group design deliberation, software maintenance, defect tracking, etc. For further information
on Strudel, see [Shepherd90].

5 Examples of such ULto-application partitioning that can be implemented in Winterp include Smalltalk's Model-View-Controller
paradigm, state transition machines, event grammars, etc.

In analogy to "shell scripts" running under Unix shell programs.

IV-i. 46

3. Interpreting User Interfaces?
Winierp differs from many other UI languages in that it is interpretive rather than compiled. We believe that interpreta-
tion of UI specifications offers a number of practical advantages over the compilation approach taken by UIL, traditional
C programming with the Xtoolkit, or compiled UIMSs.

Neither traditional C Xtoolkit applications, nor UIL applications take advantage of the interpretive nature of the Xtoolkit.
When programming in C, one is forced to go through tedious edit/compile/test cycles even for trivial program changes.
The Xtoolkit provides a resource manager (Xrm) that allows one to shorten the edit/compile/test cycle for simple applica-
tion tailoring such as selecting fonts, colors, label names, or choosing from an enumerated set of application-defined cus-
tomization choices. This is implemented by having the application load (non-interactive interpretation) the appropriate
resource settings from the resource data base at application initialization time. While this mechanism eliminates a compi-
lation stage for a number of simple customizations, the result is still a cycle consisting of repeated edits of the resource
database followed by running the application to test the results. UIL expands on the type of customizations possible via
Xrm by reading a compiled, structured description of the widget hierarchy, along with associated resources and callback
names. Rather than "interpreting" the data from a resource database, as is done with Xrm, UIL uses an additional com-
pilation stage. While UIL compilation is quicker than C compilation, it still makes rapid prototyping impractical because
of the edit/compile/test cycle.

in contrast to the batch approach provided by UIL or C, Winferp allows interactive programmatic manipulation of the UI
via a message-passing mechanism that takes full advantage of the interpretive, object-oriented nature of the Xtoolkit. The
Motif widgets are "interpretive" in that one can give programmatic commands to the Motif library to create new widgets,
and the Xt intrinsics will create the new widget on-the-fly. One can also send messages to created widget objects via the
"methods" implemented by widget-class specific functions in Motif or the Xt Intrinsics (such as XtSetValues()) - - the
effects of these messages are interpreted by the toolkit and result in an eventual updating of the graphics and actions asso-
ciated with the widget.

Winterp provides access to the "interpretive" nature of the Motif widgets through its built-in Xlisp interpreter. The inter-
pretive approach enables rapid prototyping because one receives immediate feedback on changes - - one can incrementally
build up a user interface, piece-by-piece, and one can play "what if" games by modifying both the layout and functional-
ity of the application. Winterp even includes a "direct manipulation" primitive that allows changing widget resources,
callbacks and event-handlers by designating a widget with the mouse. One need not rerun or recompile the application in
order to-see the results of a change to a UIL or X resource - - with Winterp, incremental changes to an application can be
tested interactively.

4. The Role of a P r o g r a m m i n g Language in a UIMS.

The UIMS approach requires the power of an embedded programming language to allow abstractions to be derived from
complex changes in application state and data. Such abstractions provide the separation between application semantics
and the user-interface that UIMSs strive for. This separation is really nothing other than an extension of the notion of
encapsulation to the architecture of applications based on graphical user-interfaces. Such encapsulation makes it easier to
experiment with the "look and feel" of an application without side-effects, enabling designers to more easily refine their
applications via rapid prototyping. A well architected system will also provide end-users with a means of customizing the
UI without adverse effects on the application's functionality. By embedding full programming language capabilities in a
user-interface language, Winferp allows designers to develop the appropriate language-based UI abstractions for the partic-
ular kind of application and extension architecture.

In contrast to Win~erp, many of the problems in developing and extending applications based on Motif's User Interface
Language (UIL) stem from the lack of full programming language support - - UIL only provides a language supporting a
module system, a static widget description language, and simple expression arithmetic. In non-trivial applications, one
must write, compile, and link C code which calls hooks into UIL in order to control dynamic dialog components that make
up the UI of a real application. Such an architecture imposes strong constraints on the amount of customization possible
without modifying the C source code. Ultimately, the lack of a programming language in UIL limits the usefulness of
separating the UI description from the application's functionality:

For a complex interface, fetching widgets from UID 7 files won't satisfy all of a programmer's needs. Thus, XUI
comes with a complete C language library of calls through which the DECwindows s widgets can be defined and
controlled. These calls are useful, but by using the C language libraries, the correspondence between program
structure and program function given by UIL may be lost. [Bourne90 - - p. 40] 9

7 A UID file is a User Interface Description file that is produced by compiling a UIL file.

8 DECwindows is a trademark of Digital Equipment Corporation.

9 This quote from [Bourneg0 - - p. 40] comes from an article on programming with DECwindows, focusing on the use of UIL. Although the
UIL in DECwindows is not the same as Motifs UIL, both versions provide essentially the same functionality.

IV-l. 47

With Winterp, programmers can use language constructs to represent and manipulate the state of the application and the
UI. Win~erp makes an effective prototyping environment because one can use Xlisp to build the user interface, prototype
the "dialog" aspects of the working application, and use Xlisp's object system to evolve language-based abstractions.
Depending on the kind of UI style and application architecture, one may use Winterp's features to encapsulate and
separate application functionality from the UI representing that functionMity; alternately one may find it advantageous to
build higher level UI constructs which use class-inheritance to specialize generic UI objects provided by Motif into
application-specific objects. Because Win*erp's language-base is interpretive, it can be used to describe dynamic, data-
driven user-interfaces such as those found in Sfrudel.
Tradit ional UIMSs are based on an abstract model for separating application functionality from its associated user inter-
face - - e.g Smalltalk 's Model View Controller, the Seeheim UIMS model, transition networks, event grammars , etc.
[Myers89]. Winferp is not a UIMS; it provides little policy for separating the application semantics from the UI. However,
Winterp's language base enables the design and development of a variety of UI-to-application modularization policies.

The lack of a particular UIMS policy in Win¢erp is in accordance with the current view that traditional UIMS models are
problematic; that it is difficult to separate UI from application semantics in a general way:

... in recent years, as UIMSs are built to handle more sophisticated user interfaces with direct manipulat ion ...
there has been concern that the separation between user interface and application raises more problems than it
solves. Perhaps the prototypical problem arising from this separation is tha t of whether to handle the seman-
tics of an interaction in the UIMS or the application program. For example, feedback is a task typically han-
dled by the UIMS, but the semantically rich feedback required by direct manipulat ion user interfaces (e.g.
highlighting while moving the mouse) is difficult to do without involving the underlying application. If the
application and the UIMS thus need to frequently interact, their separation becomes a hindrance rather than a
help [Rosenberg88]

In developing applications with Winterp we have found that for certain classes of applications, such as instrumentat ion
controllers, a simple recursive, event-driven state machine 10 is an appropriate abstract ion separating application semantics
from the UI. In dynamic, data-driven UI's (browsers, graph editors, CAD drawing tools), separating the UI from the
application objects has proven to create messy architectures; a bet ter solution is to use Motif widgets subclassed 11 into
application-specific UI objects handling their own state and actions. We believe tha t it is best to give programmers the
full capabilities of the Motif toolkit, augmented by Win¢erp's interpretive, language-based interface. Application program-
mers can use these features to evolve the appropriate UIMS to do the job.

Winterp's policy-free UIMS architecture makes Winterp-based applications far more customizable than applications based
on UIL or the Widget Creation Library (WCL). Both UIL and WCL enforce an architecture which strongly separates the
dynamics of the application from the static presentation of the panels comprising the application's UI. Such an architec-
ture will only allow trivial customization of applications employing state-based dynamics. A simple example of such a
problem: one wants to add a but ton to an application that does the same thing as a menu-entry (because one selects this
entry often). The application designer had the menu entry "grey out" to indicate tha t it is not a suitable choice given a
particular application state. With UIL or WCL, special code must be written at the C-language level to handle such
state-based changes; this code is tied to assumptions about the static interface described by the user interface language. In
the case of the customization just described, the appropriate state-based inactivation of the but ton may not occur - - this
can result in the application entering a disallowed state if the user selects it without knowing the choice was invalid. Even
if the error can be t rapped in the but ton ' s callback, the user is not being given the kind of state-based feedback tha t is the
hallmark of good UI design. The problem here is that application state cannot be described in the UI language. The lack
of programming language features make it impossible to propagate even the simplest s tate changes to s tate-dependent UI
components and this creates an inelegant architecture for both application designers and application customizers.

UIL and WCL force application architectures which hard-code application dialog in C for certain expected UI presenta-
tions described in the user-interface language. The assumption, that dialog and presentation are separate, limits the kinds
of UI customizations that are possible to trivial layout modifications. Applications use dialog to prompt the user for infor-
mat ion needed to complete a previously executed command. Dialog is also used to limit the amount of screen real estate
used by an application - - selection choices and input fields that are not of pr imary concern are hidden until needed. Per-
sonal preference, screen real estate usage and application usage pat terns should dictate whether one elects to select a choice
directly, or via dialog. Thus, the customization of dialog versus direct-presentation may be a useful feature for certain
applications. For example, some electronic mail (e-mail) interfaces support multiple folders for filing/copying information
tha t is received in one's " in-box". Some e-mail UI's will use dialog for folder selection when a "copy" or " mo v e" opera-
tion is invoked. People doing a lot of filing may prefer to have direct control over the selected folder 12, rather than having

10 Lisp's llst and symbol manipulation features make it especially easy to implement such state machines.
11 Note that Winterp-Lisp allows subclasslng of widgets without resorting to the complexities and tedium of widget subclasslng in C with

the X toolkit.

12 An example of a e-mall UI that does not utilize dialog for folder selection is the MIT X Consortium client xrnh. A common complaint

IV-l. 48

the system prompt for a folder each time. With UIL or WCL, customization of the tradeoffs between presentation and dia-
log is not possible within the user interface language due to lack of programming language constructs. With Winterp, such
customizations are possible.

5. A d v a n t a g e s o f Lisp as a U I M S L an gu age

Programming language features are present in UIMSs such as Open Dialogue [Schulert88], and Serpent [SEI89]. Winterp
differs from such UIMSs because it does not a t tempt to define a new user interface language into which programming
language constructs need to be introduced. Rather, Winterp uses a subset of a standard language - - Common Lisp - - and
extends this language to describe UI layout and dialog. The choice of Lisp as the widget layout and prototyping language
in Winterp provides important advantages:

• Highly expressive:

Lisp allows new functionality to be expressed quickly using less code than an equivalent C program because it is a
high-level language featuring symbol and list manipulation [Creech87b] [Creech87a], first class procedures
[Creech87b] [Creech87a], object-oriented programming [Betz89], and automatic memory management via garbage
collection [Creech87b] [Creech87a]. Lisp's features for manipulating lists and trees of arbitrary objects are used to
represent UI layout structures and Winterp introduces new objects (widget-objects) to represent UI components.

• Designed to be interactive, interpretive:

Lisp makes a good environment to drive an interactive interface to the Motif widgets because the language was
designed to be interpreted. Interpretation can also be accomplished in traditionally compiled languages (such as C),
but in Lisp, small one-off changes can be made with reduced effort due to dynamic typing. Such changes are typical
in rapid prototyping.

Lisp's interactive error handling and debugging allows for programming errors to be caught, debugged, and fixed
interactively. Debugging occurs within the environment that caused the error to arise, and the full power of the
language interpreter is available to allow programmers to inspect, alter, or fix the environment. After fixing a bug,
one may be able to resume execution of ones code from the point that caused the error without having to restart the
program. These debugging features are essential for rapid prototyping.

• Code-Data equivalence:

Lisp data is represented in the same form as Lisp programs [Creech87b] [Creech87a], which means that programs can
perform computations to create/al ter data structures representing programs. Such meta-programming allows the
creation of high-level data-driven abstractions for user interfaces created programmatically via Motif and Xt Intrin-
sics calls.

Winterp-Lisp can thus be used to create dynamic widget layouts through computations that create and mutate data
structures representing user-interfaces. For example, in our Strudel groupware toolkit, Wiuterp's interpreter and
Motif UI primitives are used as a description language for creating and processing active/graphical forms. Such
forms can be sent (as textual programs) through standard e-mail channels. The receiving Strudel system interprets
the message and displays a form containing a user interface built from arbitrary combinations of widgets and bit-
maps. These "forms" can even be whole user-interfaces and associated programs that can be passed around from
user-to-user as Lisp "continuations."13

6. I m p l e m e n t a t i o n Issues in E m b e d d i n g a Lisp I n t e r p r e t e r

6.1. P r o b l e m s w i t h T r a d i t i o n a l Lisp S y s t e m s

Despite its advantages, Lisp is traditionally associated with large, slow and expensive systems 14 -- Lisp's flexibility has its
costs. Attempts at building Lisp-based applications that are good citizens on Unix workstations have been problematic
because systems such as Common Lisp (CL) create huge, resource-hungry processes that swap out all other applications
and cause memory thrashing [Creech87b] [Creech87a]. This results in unacceptable overall system performance if the CL
process is but one of many processes competing for resources on a Unix box.

While CL continues to be an excellent prototyping platform, few acceptable solutions to the "delivery problem" have been
found for applications embedded in a CL environment. One unacceptably drastic solution is to recode the completed CL-

about xm/~ is that the folder selection area takes up too much real estate. This is yet another example where dialog versus presentation
customization would solve an existing problem.

13 One of our research issues is how to provide security for systems that "open" to programmatic manipulation from outside - - they can
easily be infected with viruses.

14 One solution to the "large" and "slow" problems has been to create special operating systems and hardware for Lisp - - Lisp machines.
Such specialized computers are being priced out of the market by general purpose Unix workstations using the X Window System and running

softwaxe that is portable across a number of vendor platforms.

IV-l. 49

based prototype into C - - an approach often used to create deliverable versions of expert systems and other complex
applications. This approach is time consuming, error prone, and changes the feel and the flexibility of the delivered appli-
cation: applications prototyped with CL assume and make use of the underlying features of the Lisp system; these assump-
tions must be removed from the design or be recoded in the delivery language.

In the past, we have also experienced problems in interfacing large Common Lisp systems to other C-iml~lemented libraries
and low-level device drivers - - the problem stems from the difficulties in importing, exporting and translating arbitrary
Lisp data structures to/from the C level; problems also arise from the explicit control requirements of the CL interpreter's
evaluator which make it difficult to interface to event-driven programs such as the X toolkit.

6.2. Solution: a Hybr id Implementat ion

Fortunately, another class of Lisp application has been successful in a general purpose computational environment - - a
hybrid architecture of Lisp and C giving the flexibility of a Lisp system while allowing delivery of a relatively small and
efficient process. Under Unix, Richard Stallman has created a highly-customizable editor-based programming environment
called GNU Emacs [Stallman87] - - this is a system that delivers to the Unix user a text-editor oriented UI that is the
foundation of the Lisp Machine programming environment. Under MS-DOS 15, successful programs like AuloCAD 16 con-
tain a Lisp customization language embedded in a CAD program.

The approach taken by such hybrid applications is that a small mini-Lisp interpreter serves to "glue" together efficient C-
implemented primitives that make up an application. User-customization and prototyping under such a hybrid system
amounts to using the Lisp interpreter to reconfigure C-implemented building blocks in order to change, modify, or improve
the functionality of the system. Such an application architecture follows the "80/20 heuristics" for program execution - -
low level routines that take up most of the computational resources are coded in C, and are therefore fast and efficient in
memory use (no garbage collections caused by low-level code). The Lisp interpreter is relatively slow in comparison to a
compiled C program, but it only serves to flexibly glue together components of the "outer loop" of a program. For an
illustration of this hybrid architecture, see Figure 1.

Win~erp solves the problems traditionally associated with Lisp delivery by using this hybrid approach - - a small, fast,
lightweight Lisp interpreter based on David Betz's Xlisp serves as an interactive, configurable mechanism tying together
high-level C-implemented application-specific primitives. Because Xlisp is implemented entirely in C, one can simply use
Xlisp's C library to directly recode any Lisp code into a C-implemented primitive.

6.3. Evolving f rom Prototype to Deliverable wi th Hybr id P r o g r a m m i n g

Winterp supports an evolutionary program lifecycle: Win~erp application writers rapidly prototype new functionality by
using the interpreter to interactively refine the layout, looks, and functionality of the application. Once functionality has
stabilized, a programmer can improve the application's efficiency by reimplementing the functionality in C while maintain-
ing the same programmatic interface to the rest of the system. The new primitives will then serve as the building blocks
for the next layer of prototyping and customization. The end result, if designed carefully, is a relatively small and fast
application that provides the right set of building blocks and hooks to permit end-users to customize the look and feel of
the application.

Win~erp is also useful for rapid prototyping applications that do not need to be delivered with an embedded customization
language. Systems with such delivery goals may still use the aforementioned application lifecycle. As the application
matures and Lisp prototype code stabilizes, the program can gradually be recoded entirely into C. Eventually, this process
will allow a standard C-implemented Motif program to be delivered.

Contrast this stepwise refinement from prototype to deliverable with the approach of throwing out the entire CL-based
prototype and starting from scratch in a language like C or C++. The advantages of creating deliverables incrementally
via hybrid programming are: (1) Existing regression tests may be applied to the deliverable under construction, such that
the effects of each reimplementation can be tested; (2) Developers and alpha-testers can use the application being recoded
for further development and further work, thereby checking the impact of the changes on the usability, customizability,
and functionality of the application.

7. An Architecture for Extensible UIs and Applications

The architecture of an application built on top of Win~erp allows for applications to be delivered with a variety of UI
styles. Such customizability is important because it is difficult to please everyone with a single UI style, and because sys-
tem designers cannot foresee all possible needs of M1 users. With Winterp, UI styles can be specified via Winterp-Lisp
"scripts" which are loaded into the application at run-time. Inexperienced users can customize the UI or application's
functionality by using "programming by example" based on existing scripts. Application "gurus" may come up with new

15 M S - D O S is a t rademark of Microsoft Corporation.

ls AutoCAD is a t rademark of Autodesk Corporation. IV- 1.50

styles, merge features of existing styles, add shortcuts and accelerators, or come up with new functionality. Such customi-
zations are often distributed to others within the organization. Extensible applications like AutoCAD and Hypercard 17
have even created an "af termarket" of scripts that create new applications within the environment provided by the exten-
sible application.

Figure 1 shows the architecture of an extensible application in which Winlerp-Lisp serves as a customization script and
"glue language" between C-implemented application and user-interface primitives.

WINTERP-based application

I ~Keyboard

CPU ~-1 X server
Display

Figure 1. Architecture of an extensible application based on Winterp.

8. W i n t e r p F e a t u r e s

8.1. Xl isp t

Winierp uses Xlisp [Betz89] because it is reliable, small, fast, and free. Xlisp has been around since 1985, and has evolved
considerably since it first appeared publicly. Because it has been in widespread use for some time, most bugs have been
shaken out of the system. Also, the newsgroup comp.lang.lisp.x has been an effective public channel for exchanging infor-
mation and patches. Xlisp was designed to be run on PCs; because it was designed with a limited environment in mind, it
has turned out to be quite fast and memory-efficient while remaining portable across a variety of architectures ranging
from 16 bit PC's to workstations. Finally, Xlisp is free, thanks to the generosity of David Betz.

8.2. T h e Xl isp O b j e c t S y s t e m

Xlisp's Smalltalk-like object system [Betz89] serves as a powerful, yet simple, mechanism for structuring Lisp code. For
customization, the object system is simple enough not to confuse people using Winterp as an extension language. For pro-
totyping, it provides a clear mechanism for code structuring and reuse while not impeding the ability to make rapid
changes.

Xlisp classes describe the type of a particular object by declaring a set of variables held in each object. These instance
variables may only be accessed by methods that respond to messages sent to the object. Methods are defined for particular
classes, and functionality of other classes may be incorporated into new classes via inheritance.

As an introductory example of using the object system, we create a new class - - Grep- I tem-Class . Instances of the class
correspond to a datum produced by the Unix grep(1) file searching program, g rep (1) produces output consisting of
file-names, line-numbers, and the instance of a regular expression match. Below, we create a new class containing those
items as instance variables. The new class instance is created by sending the instance creation message :NEW to the class
Class:

;; (SEND Grep-Item-Class :NEW) returns <grep-item> instance.
(SETQ Grep-Item-Class

(SEND Class :NEW
' (file-name line-hum match-line)
))

Grep- I t em-Class class will be used in upcoming examples in this paper, ultimately leading up to the "Search Browser"
example program in the next section. Below, we define a method corresponding to the message : d i s p l a y - s t r i n g - - this
method will be used by the search browser as a way to present the objects in the browser. We also define the accessor

17 Hypercard is a t rademark of Apple Computer .

IV-l.51

methods :file-name and :line-num.

;; (SEND <grep-item> :display-string) returns "<filename>: <match-line>"
(SEND Grep-Item-Class :ANSWER :display-string '()

,(
(FORMAT NIL "'A: "A"

file-name match-line)
))

;; (SEND <grep-item> :file-name) returns file-name (string) of <grep-item>
(SEND Grep-Item-Class :ANSWER :file-name '()

,(
file-name
))

;; (SEND <grep-item> :file-name) returns line-number (fixnum) of <grep-item>
(SEND Grep-Item-Class :ANSWER :line-hum '()

,(
line-hum
))

8.3. I n t e r f a c e s t o U n i x P r o c e s s e s a n d D a t a

Winterp extends Xlisp's functionality by providing a number of Unix-specific interfaces that are useful for tying the
environment into the rest of the Unix world. Specifically, Winterp provides easy-to-use interfaces to the Unix sys tem(3s) ,
popen(3s) , p c l o s e (3 s) , and f s c a n f (3 s) library routines. Since Unix programs typically consist of pipelines of format-
ted data, one can use popen(3s) to start up subprocesses and pipe their formatted text output to routines such as
fscanf(3s), or Xlisp's r e a d - c h a r , r e a d - l i n e , and r e a d - b y t e .

As an example of using these routines, we add a new method on the class defined above, which reads a line of output from
the Unix command g r ep (1) from a pipe, and puts the data into the instance variables of a Grep- I t em-Class object.

;; (SEND <grep-item> :read-grep-info <pipe>) returns <grep-item> or NIL if EOF.
;; Ivars are initialized to data from a line of "grep -n" output, which is of
;; the format <filename>:<linenum>:<matching line>\n
(SEND Grep-Item-Class :ANSWER :read-grep-info '(pipe)

,(
(if (AND

(SETQ file-name (FSCANF-STRING pipe "Y~[':]:"))
(SETq line-hum (FSCANF-FIXNUM pipe "Y,d:"))
(SETQ match-line (FSCANF-STIIING pipe "y,[~\n]\n"))
)

SELF ;return SELF if successful
NIL ;return NIL if hit EOF
)

))

The Lisp function grep, below, is an example of using Grep - I t em-Clas s . This function invokes "grep -n <regexp>
<wi ldcarded f i l e s > " in a sub-shell, sending the output of the command to a pipe. An instance of Grep- I t em-Ctass is
created for each regular expression match found, with method : r e a d - g r e p - i n f o initializing the object to contain the data
corresponding to one match. The function returns a list of objects corresponding to the matching items found by g rep (1) .
This function plays a key role in the upcoming search browser example application.

;; (grep <grep-arg-string>) returns list of <grep-item>.
;; <grep-arg-string> == "[flags] <regexp> <wildcarded files>"
(DEFUN grep (grep-arg-string)

(DO*
(;; loop variables, initializers, and increments.
(fp (POPEN (STRCAT "grep -n " grep-arg-string " /dev/null")

:DIRECTION :INPUT))
(line (SEND (SEND Grep-Item-Class

(SEND (SEND Grep-Item-Class
(result '())
)

;; loop test and return
((NULL line)
(PCLOSE fp)
(REVERSE result)
)

;; loop body
(SETQ result (CONS line result))
))

:NEW) :read-grep-info fp)
:NEW) :read-grep-info fp))

;init to an empty list

;:read-grep-info returns NIL on EOF
;close the pipe opened above
;return list of grep objects.

;prepend grep-obj to list

8.4. M o t i f W i d g e t s a r e F i r s t - C l a s s O b j e c t s

Winlerp uses Xlisp's object system as its interface to the class hierarchy of widgets provided by Motif. Specifically, each
Motif widget class is represented by one or more object classes in Winlerp. A wide range of UI objects are provided. Sim-
ple widgets include text or pixmap labels, pushbuttons, toggle buttons as well as scrollbars and scale valuators. More com-
plex widgets include a text editor, a file browser, and a list browser. Motif includes manager widgets that manage the
geometries of other widgets via constraints, row/column placement, or menu layout. Shell and dialog widgets provide

IV- i. 52

top-level windows that talk to the window manager. Other widgets that are or will be available in the public domain or
through various software suppliers include table layout managers, directed-graph layout managers, graphical gauges, plot-
ting and line graphics widgets, etc.

F~om Xlisp, Motif widget classes and instances look just like normal Xlisp classes and instances, meaning that one can add
new methods or override old ones, possibly using polymorphism to exploit similarities between types despite different
implementations. Type inheritance and subclassing are available to specialize existing widget classes.

As an example of using Xlisp's object-oriented features with Motif widgets, we specialize Motif's text editor widget as a
file-viewer via (trivial) subclassing. The new class, Text -Viewer-Widget -Class , will be used in the "Search Browser"
example program in the next section. Its function is to display the file of a browsed item with the text scrolled to the
appropriate line. We subclass the Motif text widget so that we can add a method : f i n d - f i l e which reads the specified
file, displays it in the text widget, and scrolls the text to the appropriate line number. The class has an extra instance
variable, f i l e - p a t h which stores the name of the file. This allows method : f i n d - f i l e to be more intelligent - - if the
same file is browsed multiple times, it will not be reread each time.

First, we define the new class by sending message :NEW to class Class , with arguments specifying the instance variables of
the class, as well as the superclass. Then, we define the instance initializer method :ISNEW, which will automatically be
called whenever new instances of the widget are created (by sending :NEW to the class). The initializer method sets the
instance variable, then calls the superclass' initializer method to create the Motif text editor widget. Since Text -Viewer-
Widget -Class is a specialized editor, the instance initializer hard-codes optional features of the editor such that all
instances end up having scroll bars, display multiple lines of text, etc.

(SETQ Text-Viewer-Widget-Class
(SEND Class :NEW

'(file-path) ;new instance vars
'() ;no class vars
XM_TEXT_WIDGET_CLAS S)) ; superclass

;; (SEND Text-Viewer-Widget-Class :NEW <:MANAGED/:UNMANAGED> <parent> [resources...])
(SEND Text-Viewer-Widget-Class :ANSWER :ISNEW '(managed-kwd &rest args)

,(
(SETQ file-path "") ;initialize instance var
(APPLY 'SEND-SUPER ;call superclass's init to create widget

c (:iSNEW ,managed-kwd ;either :MANAGED or :UNMANAGED
:SCROLLED ;force the editor to have scrollbars
,@args ;parent widget + optional arguments
:XMN_EDIT_MODE :MULTI_LINE_EDIT ;instance is used to view files...
:XMN_EDITABLE NIL ;do not allow user to edit text.
))

))

The method : f i n d - f i l e is defined next. Note that in X~sp methods, the symbol SELF is bound to the object receiving
the message. The messages :SET_INSERTION_POSITION, :GET_INSERTION_POSITION, :SCROLL, :REPLACE, :SET_STRING,
:ENABLE_REDISPLAY and :DISABLE_REDISPLAY correspond to methods defined on the superclass XM_TEXT_WIDGET_CLASS.
These are implemented in C by the Motif toolkit.

;; (SEND <textviewer> :find-file <filename> <linenum>)
(SEND Text-Viewer-Widget-Class :ANSWER :find-file '(filename linenum)

,(
(COND
((STRING= filename file-path) ;if file already read into widget
(SEND SELF :SET_INSERTION_POSITION O) ;then just make <linenum> be top
(SEND SELF :SCROLL (1- linenum)) ;by scrolling to it.
)

(T ;else read file into widget.
(LET* ((fp (OPEN filename :DIRECTION :INPUT))

insert-pos
text-line)

(IF (NULL fp)
(ERROR "Can't open file." filename))

(SEND SELF :SET_STRING '"') ;clear out old text
(SEND SELF :DISABLE_REDISPLAY NIL) ;don't show changes till done
(LOOP
(IF (NULL (SETQ text-line (READ-LINE fp)))

(RETURN))
(SETq insert-pos (SEND SELF :GET_INSERTION_POSITION))
(SEND SELF :REPLACE insert-pos insert-pos (STRCAT text-line "\n"))
)

(SEND SELF :SCROLL linenum) ;make <linenum> top of screen
(SEND SELF :ENABLE_REDISPLAY) ;now show changes...
(CLOSE fp)
(SET~ file-path filename)
)))

))

IV. 1-53

8.5. O p e n A p p l i c a t i o n A r c h i t e c t u r e

Winlerp promotes an open, extensible architecture for applications because designers cannot foresee all the possible needs
of the end-user. In addition to being open to the application customizer, Winterp is also open to systems integration in
which applications must work together with other applications running on the network. Winlerp enables such integration
because its language interpreter is implemented as a server (using T C P or UDP sockets).

Thus, all Win~erp-based applications have a built-in, extensible remote procedure call (RPC) mechanism which allows
other applications, possibly running non-locally, to send commands to execute application functionality. Such an architec-
ture allows applications to talk to each other, share data, etc.

Figure 2 shows a diagram of Winterp's server architecture. Both local and remote applications can invoke remote pro-
cedure calls in Winterp-based applications. Programmat ic changes can be sent to Winterp from the Unix command shell
and shell scripts via a simple client program, wl, which is included with the Winlerp distribution. For example, a user-
defined function start-application may be called within Winlerp by executing the following Unix command:

wl '(start-application) '

X Server, Display
Keyboard, Mouse.

 oo,kit /

Dialogue and Presentation Prims.

Application-Specific Primitives

/'~erverized Lisp Interprete~x~
(~ l (Load/Run~ (RPC) [Application & ~ " [UI programs.)

[Local Application [] Editor (GnuEmacs)] [Remote Application]

Figure 2. Inter-application communications via Winterp's Xlisp server.

8.6. " W h a t y o u p r o g r a m is w h a t y o u s e e "

The GNU Emacs editor provides an elegant environment for writing and formatt ing is Winlerp programs. The Winlerp
distribution contains an extension to Emacs ' Lisp-mode whereby an Emacs command will send the current Lisp form being
edited to Winlerp for evaluation. This allows truly interactive programming because one need not exit the editor to see
the results of evaluating a code fragment; with Winterp, one can see the graphical results of interactive changes to a pro-
gram immediately. Note that Winterp is architecturally separate from the GNU Emacs editor (see Figure 2) - - interfaces
to other editors are possible, but are not provided in the current Winlerp distribution.

18 Emacs' Lisp-mode will automatically indent one's code and help catch unmatched parentheses.

IV. 1-54

Non-Emacs users may find an example program in the Winterp distribution useful for interactively editing and evaluating
code with the Motif text editor widget: by loading winterp/examples /w_etr lpnl . l sp into Winterp, a window will pop
up providing a rudimentary editor, file browser, and control panel for the system. The control panel contains buttons that
control Xlisp's debugger and error backtrace, as well as controls to load files, edit files, and evaluate the Lisp form being
edited.

8.7. A u t o m a t i c R e s o u r c e Conve r s ions

In Winte~p, any Motif resource that can be represented in the X resource manager (i.e. one can set the resource via .Xde-
faults) can be specified as a Lisp string, and it will automatically be converted to the appropriate type. This is especially
useful for automatically converting strings to XmStrings. Other useful conversions include converting color names to type
Pixe l , and converting bitmap file names to type Pixraap.

For an example of automatic string-to-Pixel conversion, the following code will change the foreground and background
colors of the widget-object bound to symbol widget:

(SEND widget :SET_VALUES
: XMN_FOREGROUND "red"
: XMN_BACKGROUND "blue"
)

8.8. I n t e r p r e t e d Cal lbacks

Xtoolkit callbacks, event-handlers, timeouts, translations, and accelerators are seamlessly integrated with Winlerp - - X
events can cause arbitrary code (both Lisp and C) to be executed. For example, if the symbol widget is bound to a
widget-object that has an "activate callback", then the following callback will fire whenever the activate callback occurs
(e.g. pushing a pushbutton, typing return into a text field editor):

(send widget :SET_CALLBACK :XMN_ACTIVATE_CALLBACK '(CALLBACK_REASON CALLBACK_WIDGET CALLBACK_XEVENT)
'(;callback code to execute

(FORMAT T ;print information about the callback
"reason = "A; widget = "A; event = "A\n"
CALLBACK_REASON' CALLBACK_WIDGET CALLBACK_XEVENT)

))

When the callback above fires, the symbols CALLBACK_REASON, CALLBACK_WIDGET and CALLBACK_XEVENT get bound to
data from the Xtoolkit's call_data structure. Some widget classes use special call_data structures to pass widget-class
specific data on to the callback code. In Winterp, those widget classes have their own callback methods to fetch the values
from widget-class specific call_data structures and bind the corresponding symbols. The call_data symbols are only bound
within the scope of the callback code's execution. The code in a callback occurs in an an implicit larabda, which means
that callbacks can create lexical closures.

In comparison to callbacks, Xtoolkit's translation and accelerator mechanisms allow a fine-grained definition of how keys-
trokes, key-chords, and mouse gestures can fire off the execution of code. Winterp's interface to that mechanism is through
a special "action procedure" L i sp() whose arguments are evaluated as a Lisp function call. For example, the following
Xtoolkit translation- or accelerator-table entry 19 will cause the application-defined Lisp function ctrl-A-hit to be called
when the key sequence CTRL-A is entered on the widget:

"Ctrl<Key>A: Lisp(ctrl-A-hit ACTIDN_WIDGET ACTION_XEVENT)"

In the code above, symbol ACTION_WIDGET is bound to the widget-object that caused the action procedure to fire, and
ACTION_XEVENT is bound to the XEvent-object that matched the translation or accelerator entry. These values are then
passed as arguments to function c t r l - A - h i t .

8.9. A u t o m a t i c M e m o r y M a n a g e m e n t

Xlisp's garbage collector has been extended to reclaim unused X, Xtoolkit, and Motif storage - - this allows programmers
to concentrate on the UI and application functionality, rather than memory management. Memory management is one of
the pitfalls that complicates X programming in C - - novices have difficulty in determining the lifetime of objects in X and
the Xtoolkit, resulting in hard-to debug program crashes if objects are freed too earl~ or subtle memory leaks if objects
are not freed at all. In Winterp, memory need not be managed explicitly, since Lisp's garbage collection automatically
frees up any memory that is no longer referenced by the system.

In particular, Xlisp's garbage collector has been extended to reclaim storage associated with destroyed widget objects,
along with any toolkit-internal storage associated with these widget objects. Such garbage collection occurs for callbacks,
event-handlers, timeouts, XmStrings, and XmStringTables.

1o A translation/accelerator entry may be specified in an X resource file, e.g..Xdefaults, or may be set directly within Winterp.

IV. 1-55

Garbage collection of pixmaps in Winlerp is especially useful because we can expect pixmaps to take up a reasonable
amount of client and server space in typical graphic/iconic Motif applications. Winterp extends Motif's reference counting
and pixmap caching scheme to work with garbage collection. Server and client-side storage associated with a pixmap will
get reclaimed when no references to them exist in any widget-object or other Winlerp variable.

8.10. P r o g r a m m i n g by Direct Manipulation

The current release of Winterp includes a primitive which allows for "programming by direct manipulation." When one is
interactively, programmatically modifying a user interface, one often wants to send a message to a widget-object without
knowing it's "name" or the symbol to which the widget object is bound. The primitive get_moused_widget allows mes-
sages to be passed to any widget-object one can point the mouse at. Developers may use this for rapid prototyping - - they
can immediately see the changes they are making to the UI. Users may customize delivered Winterp-based applications by
simply "pointing" at the widgets they wish to change - - colors, fonts, sizes, callbacks, and other such widget parameters
may be changed on the fly. As an example of this capability, evaluating the following code, and then clicking on a widget
will cause the colors of the widget to invert:

(LET
((widget (GET_MOUSED_WIDGET))
foreground
background
)

(SEND widget :GET_VALUES
:XMN_FOREGROUND 'foreground
:XMN_BACKGROUND 'background
)

(SEND widget :SET_VALUES
:XMN_FOREGKOUND background
:XMN_BACKGROUND foreground
)

)

;returns the widget-object selected by user

;binds value using implicit setf placeform
;binds value using implicit serf placeform

get_moused_widget may also be used to implement an interactive, direct manipulation builder and resource editor appli-
cation on top of Winterp. Other direct manipulation primitives are being considered to allow widgets to be placed or
moved interactively.

8.11. E x t e n s i b i l i t y

Winterp is not a closed system. Hybrid programming with Xlisp makes it straightforward to add new C-implemented
widgets to the system so that they can be accessed via the interpreter. It is also easy to add special Xlib-level primitives to
Winterp in order to implement functionality not available via the widgets. The same goes for interfaces to special Unix
device drivers, etc.

Simple widgets (such as a pushbutton) can be interfaced with about 10 lines of C code, which needs to be linked in to the
rest of system. More complex widgets (such as a text or graph editor) are added with the same techniques as used by sim-
ple widgets. However, if such widgets provide a number of "convenience functions" (methods), then each convenience
function will need to be interfaced to Lisp. Each convenience function interface usually takes about 5-10 lines of C code.
Such C-level interfacing of convenience functions and widgets is simple because most of it amounts to programming via
example ("cut and paste") from existing code.

Widgets requiring new resource representations can be added as well. To achieve this, one needs to code Lisp-to-resource
converters, or simply use the String-to-Resource converters required to make such widgets work with the X resource data-
base.

9. E x a m p l e A p p l i c a t i o n - - A S e a r c h B r o w s e r B a s e d o n t h e U n i x G r e p (1) P r o g r a m .

In this section we create a Motif user interface to the Unix g rep (1) program. This simple but useful application searches
a wildcarded set of files for a regular expression, displaying each matching line in a browser. When an item is browsed (via
mouse double click) the file associated with the item is displayed, with the matching line displayed at the top of the file.

The functionality for collecting and presenting the data from the g r ep (1) program has already been defined in the exam-
ples above - - function grep, class Grep- I t em-Class and its associated methods. The capability for viewing a file has
also been defined above by class Text-Viewer-Widget-Class and method :find_file.

The browser is made from the Motif list widget, which simply displays a list of (compound) strings as a series of selectable
lines of text. Callbacks can be defined on the list widget such that when a line is selected one can retrieve the compound
string that was browsed, or get back the position (index) of the item that was browsed. Both callback mechanisms require
the programmer to maintain an external association between the browser objects and their textual representation in the
list widget. By subclassing the list widget, we can create an interface that hides the mechanism for associating objects
with the strings representing them. As an additional feature, the abstraction enables the browser to display an arbitrary

IV. 1-56

collection of objects, as long as the objects respond to a simple "protocol" - - objects receiving the message : d i s p l a y -
s t r i n g must return a textual representation of the object.

The subclassed list widget adds an instance variable i tems which holds an array of objects presented by the browser. The
browser will display the list of objects given as argument to the method : s e t - b r o w s e r - i t e m s (the method also initializes
i tems). When an item is selected via a callback, the position of the selected item is passed to method : g e t - b r o w s e r -
i t e m - a t - p o s i t i o n , which returns the browsed object using an efficient lookup implemented by array indexing.

(SETq List-Browser-Widget-Class
(SEND Class :NEW

'(items) ;new instance vars
'() ; n o c l a s s v a r s
XM_LIST_WIDGET_CLASS)) ;superclass

(SEND List-Browser-Widget-Class :ANSWER :set-browser-items '(items-list)
,(

(LET* (
(items-end-idx (LENGTH items-list))
(display-items (MAKE-ARRAY items-end-idx)))

;; initialize the 'items' instance variable so that it
;; holds all the BROWSER_0BJECTs passed in <items-list>
(SETq items (MAKE-ARRAY items-end-idx)) ;create the array
(do (;copy elts from list to array

(i o (1+ i))
(elts items-list (cdr elts)))

;; loop till no more elts
((NULL elts))
;; loop body
(SETF (aref items i) (CAR elts))
(SETF (aref display-items i) (SEND (CAR elts) :display-string))
)

;; initialize the widget, passing in the browser items.
(SEND SELF :SET_VALUES

:XMN_ITEMS display-items
:XMN_ITEM_COUNT items-end-idx
)

)
))

(SEND List-Browser-Widget-Class :ANSWER :get-browser-item-at-position '(position)
,(

(AKEF items (1- position))
))

The user interface for the search browser is created by defining a hierarchy of widget-objects. Parent widgets manage the
geometries of their children, so the resulting interface is a nesting of windows corresponding to the parent-child relation-
ships created. In the UI code below, we first create an instance of TOP_LEVELSHELL_WIDGET_CLASS which represents the
outermost window of the application - - its geometry is managed by the X window manager, allowing the user to move,
resize, and iconize the window. Inside that, we create an instance of XM_PANED_WINDOW_WIDGET_CLASS: this widget
divides up the space of the toplevel window into a series of vertical panes; the sizes of the panes can be adjusted by mov-
ing their resize handles with the mouse. The first pane is an instance of XM ROW_COLUMN_WIDGET_CLASS, a manager widget
which lays out the controls for the search browser in the following horizontal sequence: (1) a pushbutton, d o l t - b u t t o n - w ;
(2) a text label "Search for string:"; (3) a single-line text editor, s e a r c h - e d i t o r - w , into which the user types the regular
expression for the search; (4) a label "From Files:"; and (5) a single-line text editor, f i l e s - e d i t o r - w , into which the user
types the wildcarded filenames to search. The pane below the controlpanel is browser-w, an instance of the L i s t -
Browser-Widget-Class . The pane below the browser is : f i l ename- labe l -w, which displays the name of the file being
browsed. And finally, the last pane is v iewtex t -w, an instance of Tex t -Viewer -Widge t -Class which is used to display
the browsed files. The keyword :SCROLLED used in creating the text viewer and browser widgets mean that these widgets
are created with scrollbars.

(let (top-w paned-w controlpanel-w)
(SETQ top-w

(SEND TOP_LEVEL_SHELL_WIDGET_CLASS :NEW
:XMN_TITLE "Grep Browser"
:XMN_ICON_NAME "Grep Browser"
))

(SETQ paned-w
(SEND XM_PANED_WINDOW_WIDGET_CLASS :NEW :MANAGED

top-w ;the only child of the toplevel window
))

(SETQ controlpanel-w
(SEND XM_ROW_COLUMN_WIDGET_CLASS :NEW :MANAGED

paned-w ;the first child of the paned window
: XMN_ORIENTATION :HORIZONTAL
: XMN_PACKING :PACK_TIGHT
))

(SETQ doit-butt on-w
(SEND XM_PUSH_BUTTON_WIDGET_CLASS :NEW :MANAGED

controlpanel-w ;the first child of the controlpanel

IV. 1-57

:XMN_LABEL_STRING "Do Search"
))

(SEND XM_LABEL_WIDGET_CLASS :NEW :MANAGED
c o n t r o l p a n e l - w ; t h e second c h i l d o f t h e c o n t r o l p a n e l
:XMN_LABEL_STRING "Sea rch f o r s t r i n g : "
)

(SETQ s e a r c h - e d i t o r - w
(SEND XM_TEXT_WIDGET_CLASS :NEW :MANAGED

c o n t r e l p a n e l - w ; t h e t h i r d c h i l d of t h e c o n t r o l p a n e l
:XMN_EDIT_MODE :SINGLE_LINE_EDIT
))

(SEND XM_LABEL_WIDGET_CLASS :NEW :MANAGED
c o n t r o l p a n e l - w ; t h e f o u r t h c h i l d of t h e c o n t r o l p a n e l
:XMN_LABEL_STRING "From F i l e s : "
)

(SETQ files-editor-w
(SEND XM_TEXT_WIDGET_CLASS :NEW :MANAGED

controlpanel-w ;the fifth child of the controlpanel
:XMN_EDIT_MODE :SINGLE_LINE_EDIT
))

(SETQ browser-w
(SEND List-Browser-Widget-Class :NEW :MANAGED :SCROLLED

paned-w ;the second child of the paned window
:XMN_VISIBLE_ITEM_COUNT 20
))

(SETQ filename-label-w
(SEND XM_LABEL_WIDGET_CLASS :NEW :MANAGED

paned-w ;the third child of the paned window
:XMN_LABEL_STRING "None"
))

(SETQ viewtext-w
(SEND Text-Viewer-Widget-Class :NEW :MANAGED

paned-w ;the fourth & final child of paned window
:XMN_NEIGHT 400
))

(SEND top-w :REALIZE) ;create the toplevel window ~ children
;;
;; now that the widgets have been created, we know their sizes; set constraint resources on the controlpanel
;; and the filename label widget so that the paned window widget managing their geometries won't let them be
;; resized (this removes the "resize handles" for these widgets).
(LET (height)

(SEND controlpanel-w :GET_VALUES :XMN_HEIGHT 'height)
(SEND controlp&nel-w :SET_VALUES :XMN_MAXIMUM height :XMN_MINIMUM height))

(LET (height)
(SEND filename-label-w :GET_VALUES :XMN_HEIGHT 'height)
(SEND filename-label-w :SET_VALUES :XMN_MAXIMUM height :XMN_MINIMUM height))

)

Calling function d o - g r e p - s e a r c h runs g r ep (1) , searching for the regular expression in s e a r c h - e d i t o r - w from the list of
wildcarded files specified in f i l e s - e d i t o r - w . The list of objects returned by grep is then displayed in the browser
widget:

(DEFUN do-grep-search ()
(SEND browser-w :set-browser-items

(grep (STRCAT
"'" ;protect regexps from shell
(SEND search-editor-w :GET_STRING) ;get regexp for search

(SEND files-editor-w :GET_STRING)) ;wildcarded files to search
)))

We complete the user interface by attaching programmatic actions - - callbacks - - to the widget-objects created above.
First, we want the pushbutton associated with symbol d o i t - b u t t o n - w to initiate searches when it is pressed by calling
d o - g r e p - s e a r c h .

(SEND doit-button-w :ADD_CALLBACK :XMN_ARM_CALLBACE '()
,(

(do-grep-search)
))

We now attach a callback to the browser widget - - when a browser-item is double clicked, symbol
CALLBACK ITEM_POSITION gets bound to the position of the object in the browser. The position is passed to : g e t -
b r o w s e r - i t e m - a t - p o s i t i o n which returns the browsed item. The file-name and line-number data from the grep-item is
retrieved and used to display the file at the correct line number in the text viewer widget.

(SEND browser-w :ADD_CALLBACK :XMN_DEFAULT_ACTION_CALLBACE
'(CALLBACK_ITEM_POSITION) ;bound to the position of the item selected
,(

(LET* ((browsed-object
(SEND ,browser-w :get-browser-item-at-position CALLBACK_ITEM_POSITION))

(filename
(SEND browsed-object :file-name))

(linsnum
(SEND browsed-object :line-num))

IV. 1-58

)
(SEND ,filen&me-label-w :SET_VALUES :XMN_LABEL_STRING filename)
(SEND ,viewtext-w :find-file filename linenum)
))

Finally, to make the user-interface easier to use, we note that after entering text into one of the single-line text ed i t o r
widgets, it is more natural to hit the return-key to initiate a new search. Otherwise one has to move from the keyboard to
the mouse just to click the "Do Search" button. The following Xtoolkit translation entries provide the binding between
hitting the return-key and calling the d o - g r e p - s e a x c h function that initiates a new search.

(SEND search-editor-w :0VERRIDE_TRANSLATIONS "<Key>Return: Lisp(do-grep-search)")
(SEND files-editor-w :0VERRIDE_TRANSLATIONS "<Key>Return: Lisp(do-grep-search)")

9.1. A N o t e o n P r o g r a m m i n g Style .

The examples presented in this section do not necessarily represent good Motif or Winterp programming style - - the style
has been relaxed and simplified for the purpose of exposition.

First, we have used global variables throughout. For these examples, such usage makes sense because that is the way one
might use Lisp in interactively prototyping an application - - try bits of functionality out piece by piece until one has
come up with functionality that deserves to be encapsulated. Once the prototype works, one may want to turn the code
into a function, or encapsulate it within an Xlisp object. In that way, the reliance on global variables will be removed.

Second, the examples above hard-code a number of X resources that should be specifiable in the X resource database - -
either in .Xdefaults or in the application defaults files. For the purposes of these examples, it would have been confusing to
specify these resources separately from the code. Again, since the above code is prototype code, it is perfectly justifiable to
hard-code resources until one has settled on which parameters of customization should and should not be accessible via the
X resource database.

10. F u t u r e D i r e c t i o n s

Win~erp's features make it a good platform for a number of interesting experiments in UIMS and "direct manipulation
builder" technologies. Because Win¢erp is currently a language-based builder, it would make an ideal platform for the
development of a "two view" builder that would allow application prototyping via programmatic or visual manipulation
of UIs.

Win¢erp was designed to support the addition of direct manipulation interface building capabilities. We envision that a
widget "pale t te" could be built to allow the interactive selection and placement of widgets within an interface. Another
useful feature would be a resource browser which would be used to display and edit the resources associated with any
widget in the system. Extending Winterp's widget-object based interfaces so that they are "self-describing" would be a
very elegant way of dumping out a programmatic user-interface specification after it has been built interactively and
would provide the basis for a " two view" approach to interface building.

One of the areas where current direct-manipulation and "What You See Is What You Get" (WYSIWYG) interface build-
ers fail is in allowing end-user customization without having to include the builder in the deliverable. The challenge here is
to allow the traditional X resources mechanism to specify sizes, fonts, spacing, line-widths, etc., while still maintaining a
facsimile of the static UI layout intended by the application designers. Traditional Xtoolkit-based applications do not
suffer from such problems because their interfaces are laid-out via the constraints provided by geometry management
widgets. With builders, such constraint management is hard to specify graphically, so widget positioning and sizes must be
hard-coded. What is needed is the ability to provide an explicit, user-manipulable interface to the constraint-based
language that is implicit in the Xtoolkit 's manager widgets. This is an open and active research area.

Robert Leichner of HP Labs has already provided a novel UIMS structure for Win~erp by building a general-purpose
event-driven recursive state machine as a high level means of describing how application state interacts with the UI. This
UIMS architecture is being used in an ongoing project to support collaboration among distributed workgroups via the use
of multimedia (audio and video). Winterp and the state-machine based UIMS are being used as the basis for a media
management toolkit which controls experimental multimedia hardware residing on the workstation. The Slrudel project is
also experimenting with a variety of UIMS approaches in order to come up with a high-level description of e-mail based
forms.

In order to ease application development and simplify "hybrid programming", we are considering the addition of a
dynamic loader to allow new C-implemented primitives to be loaded into a running application. It may Mso be useful to
dynamically load widget code on demand, instead of always having it compiled in to the application.

IV. 1-59

11. Conclusioll

We believe that Winte~ T provides an excellent, practical development and delivery environment for extensible Motif-based
applica!:ions. If this paper has piqued your interest in Winterp, you may obtain the current source, documentation, and
exa,q+'s via anonymous t'tp fi'om host expo . l cs .mi t . edu : in directory con t r i b /w in t e rp you will find the
compress(l) 'd t a r (l) file w i n t e r p - < l a t e s t v e r s i o n > . t a r . Z 2°. If you do not have Internet access you may request the
~ource code to be mailed to you by sending a message to winterp-source~hplnpm.hpl .hp.com or
hplabs ! hplnpm ! wint erp-source .

There is also a mailing list for Winterp-related anno, ncements and discussions. To get added to the list, send mail to
winterp-request@hplnpm, hp1. hp. com or hplabs !hplnpm ! w i n t e r p - r e q u e s t .

12. Acknowledgemen t s

I would like to thank my team-mates Allan Kuchinsky, Allan Shepherd, and Robert Leichner for being highly supportive
early users of Winterp and giving feedback on problems and limitations of the design. I would also like to thank Nancy
Kendzierski, manager of HP Labs' Human-Conlputer Interaction Department for providing the support for the develop-
ment of Winterp and Strudel.
I)oug Young deserves special thanks for answering lots of "stupid questions" I had in working with the Motif and HP
widgets and for providing early copies of his excellent book on programming with Xt and Motif [Young90]. And finally,
many thanks are due to David Betz for making Xlisp publicly available.

13. References

[Betz89] David Michael Betz. XLISP: An Objecl-oviented Lisp (version 2.1) . Unpublished documentation accompanying
the public domain Xlisp software release. David Michael Betz, P.O. Box 144, Peterborough, NH 03458, April, 1989.
Note: this documentation is included in the Winterp source distribution.

[l:'~,.qloeg0] Philip F,. Bourlle an(] |,awreuce S. Shapiro. Developing with DECwindows. DEC Professional, vol. 9, no. 2,
pp. 36-44, February 1990.

[Creech87a] Michael Creecb. Lisp-(~ Evaluation Final Report. Internal Technical Report STL-TM-87-18, Hewlett-
Packard Laboratories, Software Technology Lab, July 9, 1987.

[Creech87b] Michael Creech, Scott Marovich and Niels Mayer. Lisp-C Evaluation Meeting Notes. InternaJ Technical
Report STL-TM-87-17, Hewlett-Packard Laboratories, Software Technology Lab, July 22, 1987.

[Myers89] Brad A. Myers. Tools for Creating User Interfaces: An Introduction and Survey. IEEE Software, vol. 6, no. !,
pp. 15-23, January 1989.

[OSF90] Open Software Foundation. OSF/Motif Series (5 Volumes): Molif Style Guide; Programmer's Guide;
Programmer's Reference; User's Guide; Application Environment Specificalion; User Environment Vohtme.
Prentice-Hall, 1990.

[Rosenberg88] Jarrett Rosenberg (moderator), Ralph tIill, Jim Miller, Andrew Sehulert, and David Shewmake (panelists).
UIMSs: Threat or Menace? In Human Factors in Computing Systems, SIGCHI '88, Washington, D.C., May 1988,
pp. 197-200.

[Schulert88] Andrew Schulert and Kate Erf. Open Dialogue: Using an extensible retained object workspace to support a
UIMS. In proceedings USENIX C-t-+ Workshop, Denver, Colorado, 1988.

[SEI89] Software Engineering hwt.it.ute. Serpent. Overview. Technical Report CMU/SEI-89-UG-2, Carnegie Mellon
University, Software Engineering Institute, August 1989.

[Shepherd90] Allan Shepherd, Niels Mayer, and Allan Kuchinsky. Strudel: An Extensible Electronic Conversation Toolkit.
In proceedings Conference on Computer-Supported Cooperative Work, Los Angeles, October 1990, pp. 93-104.

[Stallnaan87] Richard M. Stalhuan. GNU Emaes Manual. Free Software Foundation, 675 Massachusetts Ave., Cam-
bridge, MA 02139, 1987.

[Youngg0] Douglas A. Yom,g. 7'he X Window System: Programming and Applications With Xt, OSF/Molif Edition.
Prentice Hall, 1990.

m A s of t h i s w r i t i n g , < l , ~ t e s t v e r s l o n > > 1.01 .

IV. 1-60

