A METAMODEL FOR THE RUNTIME
ARCHITECTURE OF AN INTERACTIVE SYSTEM

The UIMS Tool Developers Workshop*

1.0 INTRODUCTION

Developers of interactive systems must make difficult engi-
neering trade-offs in order to optimize their development
processes and end products. The trade-offs are made among
desirable, but sometimes conflicting, goals such as minimiz-
ing the future effects of changing technology and improving
system runtime performance. The purpose of this paper is
to provide developers with a framework for understanding
these tradeoffs and for helping them define and evaluate
candidate runtime architectures.

£

This paper is the product of a number of meetings of user
interface tool developers. We found available models of the
runtime architecture of an interactive system inadequate for
our purposes, and we defined both a model and a meta-
model. This work was discussed at the CHI ‘91 UIMS Tool
Developers’ Workshop (see the companion paper in this
issue) and presented at the CHI '91 Special Interest Group,
User Interface Developers’ Workshop Report: Seeheim
Revisited. The discussion below is an updated version of
the work presented in those sessions. The contributing
authors are: Len Bass, Software Engineering Institute; Ross
Faneuf, Digital Equipment Corporation; Reed Little, Soft-
ware Engineering Institute; Niels Mayer, Hewlett-Packard
Laboratories; Bob Pellegrino, Digital Equipment Corpora-
tion; Scott Reed, V. I. Corporation; Robert Seacord, Soft-
ware Engineering Institute; Sylvia Sheppard, NASA; and
Martha R. Szczur, NASA. For more information, contact
the authors at: chividt@sei.cmu.edu.

SIGCHI Bulletin January 1992

32

1.1 Models and Metamodels

A number of models exist for the design of user interface
systems. Some of the more familiar ones are the Seeheim
model (Green; Pfaff & ten Hagan), the Seattle model (Lantz
et al.), the Lisbon model (Duce et al., eds.), and MVC
(Krasner & Pope) and its more modern successor PAC
(Coutaz). Acommon approach for developing such models
is to examine the functionality of an interactive system,
decide that separating the user interface functionality from
other functionality is the most important design goal, and
derive an architecture that supports this separation. The
product of this approach is a prescriptive model for an inter-
active system. Although prescriptive models are desirable,
it seems clear from the variety of prescriptive models avail-
able and the lack of consensus about which is the best that a
single, prescriptive model to fit all types of interactive sys-
tems is very difficult, if not impossible, to define.

Coutaz and Balbo (1991) take a different approach. They
do not propose a particular architecture. Instead, these
authors examine the nature of the data that passes between
the uscr interface and the non-user-interface portions of an
interactive system,

During a series of workshops in 1990 and 1991, we
expanded upon the approach of Coutaz and Balbo. We
began by analyzing the data exchanges and the internal
functions of interactive systems. This analysis led to the
definition of a model of the runtime architecture of an inter-
active system, the Arch model. The model was tailored to
satisfy our particular goal of minimizing the future effects

Volume 24, Number 1



of changing technology (e.g., buffering the remainder of the
system from the effects of evolving Interaction Toolkits).

Although this particular architectural model satisfies our
goal of buffering from the effects of change, it does not sat-
isfy other goals (e.g., maximizing runtime performance). In
fact, we contend that no single architecture will satisfy all of
the possible goals that developers can have in designing
interactive systems. Thus, we introduce the idea of a meta-
model with two purposes: to derive any number of architec-
tures, depending upon a particular developer's goals, and to
evaluate any proposed architecture in terms of desired
goals.

In the remainder of this paper we define some terminology,
list potential design criteria, consider the functionalities
essential to an interactive system, and present the Arch
model and the Slinky metamodel.

1.2 Terminology

The term "application” has several meanings. We define an
application to be the total system that is developed for its
end users. Aninteractive application consists of application
domain software and user-interface software. The applica-
tion domain, or simply the domain, is the field of interest of,
and reason for, the application (e.g., producing a payroll or
calculating the orbit of a satellite).

A user interface runtime system (UIRS) is defined to be the
run-time environment of the interactive application. A user
interface toolkit is a collection of interaction object classes
employing specific interaction media with associated man-
agement capabilities (e.g., Motif™ and OpenLook™),

2.0 CRITERIA FOR DESIGN

Design goals can be expressed in terms of criteria for evalu-
ating either the end product or the development process.
The following list is not exhaustive but does include some
of the more common criteria to be considered when design-
ing an interactive system:

» target system performance:

- size

- speed
» productivity of system development tool(s)
* buffering from changes in:

- application domain

- medium

- hardware platform

- interaction toolkit
» conceptual simplicity
» reuse of code
» meeting functional requirements
« quality of resulting user interface
- cost of:

- development system

SIGCHI Bulletin January 1992

33

- target system
* complexity of specification
» time for target system to reach its end user (or the
commercial marketplace)
» developers' abilities
« target system extensibility
= adherence to standards
* compatibility with other systems
« complexity of application data
« complexity of dialogue requirements

A given architectural design will satisfy one set of criteria;
other designs will emphasize the satisfaction of other crite-
ria. A developer can rank the criteria, determining which
are most important to his goals. (Some of the criteria are
not affected by architectural considerations; they are
included for completeness.)

3.0 FUNCTIONALITY OF AN INTERACTIVE SYSTEM

Regardless of the criteria selected as most important, all
designs must provide a certain set of functionalities. This
section discusses the data representations and the functions
necessary in an interactive system.

There are at least three types of data representations used in
an interactive system: representations of the domain data
(e.g., names and types in a data base system), representa-
tions of the media used for input/output (e.g., pixels for the
output to a bit-mapped system) and intermediate representa-
tions (e.g., "tabular, labelled, two column data with single
entry selection"), Data flows bi-directionally between the
domain-specific parts of the system and the input/output
media. Data that are expressed in the domain representation
are changed (via reorganizations, transformations, aggrega-
tions, decompositions, additions, and/or deletions) until at
some point they have media representations, and data that
are expressed in the media representation are changed to
have internal representations.

Several types of actions require control and sequencing.
There is the sequencing of end-user, task-level actions, the
sequencing of domain-specific actions, and the sequencing
required for the input/output media.

With these high-level requirements in mind, we consider the
following to be necessary operations for every interactive
system;

» control, manipulate and retrieve domain data and perform
other domain tasks

» reorganize domain data for user interface purposes

» provide task level sequencing

s provide multiple view consistency

 make media decisions

» choose the interaction objects

» provide physical interaction with the end user

» convert between domain formalisms and user interface
formalisms

Volume 24, Number 1



Different systems place different degrees of emphasis on
each function, but every interactive system must perform
these functions in some manner. There are, of course, other
functions that are important in a modern, well designed sys-
tem (e.g., detection and reporting of semantic errors, pro-
viding help messages), but some interactive systems exist
without providing these additional functions.

4.0 THE ARCH MODEL AND THE SLINKY METAMODEL

Of the criteria listed in Section 2, buffering an operational
system from changes in technology was selected as most
important in our discussions. After listing the functions
described in Section 3, we developed a model architecture
to insure that our criterion would be met. The next section
discusses the model.

4.1 The Arch Model

User interface developers sometimes find both the applica-
tion domain functionality and the UT toolkit(s) to be existing
constraints upon the development of a user interface. The
user interface software must manage the interaction
between these two externally-provided components (e.g.,
between a DBMS and X Windows). For this reason, the
domain software and the UI toolkits form the two bases of

the Arch model. Other essential functionality is provided by
three additional components, the Dialogue, Presentation and
Domain-Adaptor components. We defined these five com-
ponents of the model by allocating the functionalities enu-
merated in Section 3:

Domain-Specific Component - controls, manipulates and
retrieves domain data and performs other domain-related
functions,

Interaction Toolkit Component - implements the physical
interaction with the end-user (via hardware and software).

Dialogue Component - has responsibility for task-level
sequencing, both for the user and for the portion of the
application domain sequencing that depends upon the user;
for providing multiple view consistency; and for mapping
back and forth between domain-specific formalisms and
user-interface-specific formalisms.

Presentation Component - a mediation, or buffer, compo-
nent between the Dialogue and the Interaction Toolkit Com-
ponents that provides a set of toolkit-independent objects
for use by the Dialogue Component (e.g., a "selector” object
that can be implemented in the toolkit using either a menu
or radio buttons). Decisions about the representation of
media objects are made in the Presentation Component.

Dialogue
) Component
Domain Presentation
;bjects Objects
Domain .
Adaptor- Presentation
Component Component

/

Domain Objects

f

Domain-
Specific
Component

\

Interaction Objects

\

Interaction
Toolkit
Component

Figure 1. The interfaces between the components

SIGCHI Bulletin January 1992

Volume 24, Number 1



Domain-Adaptor Component - a mediation component
between the Dialogue and the Domain-Specific Compo-
nents. Domain-related tasks required for human operation
of the system, but not available in the Domain-Specific
Component, are implemented here. The Domain-Adaptor
Component triggers domain-initiated dialogue tasks, reor-
ganizes domain data (e.g., collects data items in a list), and
detects and reports semantic errors.

Figure 1 shows the components and the types of objects that
cross the boundaries between them. Note that the term
"object" is used to indicate the formalism that transmits
information between the components. The term does not
refer to the formal, instantiated objects defined for object-
oriented developments. Rather, objects are used here as an
expository abstraction for describing communication mech-
anisms.

Domain Objects are employed by both the Domain-Specific
and the Domain-Adaptor Components, but instances of
these objects are created by the two components for differ-
ent purposes. In the Domain-Specific Component, Domain
Objects employ domain data and operations to provide
functionality not associated directly with the user interface.
In the Domain-Adaptor Component, domain data and oper-
ations are used to implement operations on domain data that
are associated with the user interface. For example, one
domain-specific operation of a DBMS would retrieve a set
of employee names and salaries by gender from a data base.
Iterative review of the list to display parts of succeeding
records might need to be done in a Domain-Adaptor Com-
ponent. Here the Domain-Adaptor Component would sup-
plement the functionality of the Domain-Specific
Component by providing a service related to the presenta-
tion of information.

Presentation Objects are virtual interaction objects that
control user interactions. Presentation Objects include data
to be presented to the user and events to be generated by the
user. The medium used in the presentation or event genera-
tion is not defined. An example of a Presentation Object for
use with the list of employees and salaries is "tabular,
labelled, two column data with single entry selection”.

Interaction Objects are specially designed instances of
media-specific methods for interacting with the user. Inter-
action Objects are supplied by the Interaction Toolkit soft-
ware and may be primitive (e.g., graphics and keyboard
device drivers) or complex. An Interaction Object corre-
sponding to the Presentation Object cited in the paragraph
above is a dual bank of radio buttons (which allows the user
to select an employee with a particular salary from the
"male" column or the "female" column).

4.2 Shifting Functionalities and the Siinky Metamodel

The coupling of functionalities in the components of the
Arch model described above was designed to minimize the
effects of future changes in the interaction toolkit, the user

SIGCHI Bulletin January 1992

35

interface dialogue or the application domain. Dissimilar
functions were assigned to separate components in order to
allow the modification of one type of functionality with
minimal impact on other components in the system. One
result of this allocation is that the model does not satisfy all
of the criteria listed in Section 2. As discussed above, a
model derived to minimize the effects of changing technol-
ogy may have an adverse effect on the speed of the runtime
system. A single model cannot satisfy conflicting criteria.

We need an architecture that can be tailored to emphasize
the criteria of choice. The Arch model can be generalized
for this purpose. The term "Arch" suggests the more stable
development environment that occurs when goals have been
set and choices have been made. When we generalize the
Arch model, we refer to it as the Slinky metamodel. The
metamodel provides a set of Arch models, as opposed to one
particular model (Figure 2).

The term "Slinky" was selected to emphasize that function-
alities can shift from component to component in an archi-
tecture depending upon the goals of the developers, their
weighting of development criteria, and the type of system to
be implemented. This concept is loosely represented by the
flexible Slinky™ toy. (When in motion, the Slinky toy has
a dynamically shifting mass.) The graphical representation
of the Arch models with varying size components in Figure
2 is meant to convey the concept of models with compo-
nents that contain varying amounts of functionality.

To clarify the concept of shifting functionalities, consider an
example where a function in a Domain-Specific Component
was later implemented in an Interaction Toolkit. The Unix
file system was originally considered a specific application
domain, with file operations such as "open" and "delete".
‘When the interaction toolkit became more sophisticated, a
file selection widget was included in the toolkit, thus shift-
ing the functionality from one end of the model architecture
to the other.

Consider a second example where the requirement is to take
the temperature of a vessel and display the value to the end
user graphically and textually, We could allocate the func-

tions as follows:

Domain-Specific Component: Sense temperature of vessel
in Kelvin.
Domain-Adaptor Component: Create temperature object.

Dialogue Component: Request temperaturc from Domain-
Adaptor Component, and create presentation object with
value units.

Presentation Component: Present value as slider and
present units as text.

Interaction Toolkit: Display toolkit objects.
There are other ways to allocate these functions, represent-

ing a shift in the functionality assigned to the components.
The reallocation is left as an exercise for the reader.

Volume 24, Number 1



Dialogue

Slinky Metamodel

Interactlon
Toolkit

Arch Models

Figure 2. Derivation of the Arch Models from the Slinky Metamodel

4.3 Shifting Emphases

In addition to shifting functionalities, Arch models can vary
because of the type of application. Applications with com-
plex domain data will have more capabilities to store,
retrieve, reorganize, and transport data among the compo-
nents of the architecture. Applications with complex user
interaction requirements will have more capabilities that
support task sequencing, management of multiple views of
data, and responses to user actions. All user interface runt-
ime systems must provide capabilities for both data manipu-
lation and user interaction, but most systems emphasize one
type more than the other.

Data-oriented systems have extensive facilities for manag-
ing information flow, often with minimal dialogue capabili-
ties. These systems typically concentrate on the
information being viewed and manipulated by the user.
They often have standard mappings from data records to
interface representations. These systems are characterized
by:

» complex data structures as a major portion of the objects
that cross the boundaries between components,

SIGCHI Bulletin January 1992 36

« extensive facilities for specifying structural transforma-
tions and for naming and retaining the identity of data
aggregates and their elements, and

« facilities (such as a data definition language) for extending
the set of data types and for mapping easily to popular
database systems or data dictionaries.

Much of the functionality in these systems is concentrated
in the Domain-Specific and Domain-Adaptor Components.
Examples of data-oriented tools include commercial, forms-
based products (particularly those with workstation inter-
face support) and 4GL systems for accessing and maintain-
ing commercial databases (e.g., OMNIS 5).

Dialogue-oriented systems have extensive capabilities for
mapping user actions into the behavior of the interface -
managing windows, controlling appearance, choosing dif-
ferent techniques for representing the same information, etc.
Dialogue-oriented systems are characterized by:

« the provision of a specialized language, production sys-
tem, or equivalent for mapping user events into domain
actions, where the language syntax and expressive focus
are oriented towards human/computer interaction,

Volume 24, Number 1



» a tendency to model domain events in the same terms as
user events, and

« simple data interchange models (e.g., the use of shared
program variables for communication).

These systems focus primarily on the Dialogue, Presenta-
tion, and Interaction Toolkit components of the UIRS.
Examples of tools to support dialogue-oriented applications
include most of the current Unix-based UIRSs, such as Ser-
pent (Bass & Coutaz) and TAE (Szczur).

4.4 Applying the Slinky Metamode!

The Slinky metamodel provides a context in which interac-
tive architectures can be discussed in terms of desired crite-
ria. Two ways of using the metamodel are : a) to derive an
Arch model based on a desirable set of criteria and b) to
evaluate a candidate architecture to determine if it satisfies a
particular set of desirable criteria.

To construct an Arch model, select the criteria of interest,
identify the needed functionalities, identify the interaction
objects, and decide how to package the functions into com-
ponents. Each design criterion enumerated in Section 2 can
be analyzed for its architectural implications in terms of the
functionalities enumerated in Section 3. Although thisisa
subjective process, it's not a difficult one. There are known
effects for many of the criteria. For example, for the Arch
model where the overriding criterion is the efficient and
robust management of change, modular separation of func-
tionality is important because of the need for the developers
to deal with the continual, rapid infusion of new technology
over the life cycle of an application. If system performance
is the overriding criterion, one can imagine less emphasis
being placed on Dialogue and Domain-Specific Compo-
nents. Rather, data values may be passed more directly
from the Domain-Specific Component to the Presentation
Component.

The Slinky metamodel may also be used as an evaluation
mechanism for a proposed architecture. The process is to
select a criterion, derive the appropriate Arch model, and
then compare the distribution of functionalities within the
Arch model to the distribution of functionalities in the pro-
posed architecture. If the functionalities of the proposed
architecture have components that cross the boundaries of
the Arch components, the proposed architecture is not suit-
able for the satisfying the criterion,

Although we have made some progress in this activity, it
clearly is not finished. Future plans include the develop-
ment of a matrix allocating functionality to the components
of the metamodel for each criterion and a discussion of the
tools needed to create and maintain each component of the
architecture.

SIGCHI Bulletin January 1992

5.0 SUMMARY

Developers of interactive systems often have conflicting
software engineering goals. In order to make informed
judgements about the trade-offs involved in meeting these
goals, a software designer needs: an understanding of all of
the functionalities involved in an interactive system, an
understanding of the significance of his goals in terms of the
runtime architecture, and an understanding of how a pro-
posed allocation of the functionalities supports the desired
goals. This paper provides guidance for developing and
evaluating user interface architectures in terms of develop-
ers' goals and the functionalities required.

6.0 REFERENCES

Bass, L. & Coutaz, J. (1991). Developing Software for the
User Interface. Reading, MA: Addison-Wesley.

Coutaz, J. (1987). PAC, an implementation model for dia-
log design. Proceedings of HCI Interact ‘87, 431 - 436.
Amsterdam: North-Holland.

Coutaz, J. & Balbo, S. (1991). Applications: A dimension
space for user interface management systems. CHI ‘9]
Conference Proceedings, 27-32. New York: ACM.

Green, M, (1985). The University of Alberta user interface
management system. Computer Graphics, 19, 3, 205-213.

Krasner, G. E. & S. T. Pope. (1988). A cookbook for using
model-view-controller user interface paradigm in Small-
talk-80. Journal of Object Oriented Programming, 1,3, 26-
49,

Lantz, K. A., Tanner, P. P, Binding, C., Huang, K. T., &
Dwelly, A. (1987). Reference models, window systems and
concurrency. Computer Graphics, 21,2, 87-97.

OMNIS 5 Application Designers’ Handbook for IBM and
Compatibles. (1990). Foster City, CA: Blyth Software.

Pfaff, G. & ten Hagan, P. J. W. (1985). Secheim Workshop
on User Interface Management Systems. Berlin: Springer-
Verlag.

Szczur, M. R. (1991). TAE Plus: a NASA productivity tool
used to develop GUIs. Proceedings of the AIAA Computing
in Aerospace Conference (in press). Baltimore, MD: AIAA.

User Interface Management and Design (1991), In D. A,

Duce, M. R. Gomes, F. R. A. Hopgood, J. R. Lee (eds.).
Eurographic Seminars, 36-49. Berlin: Springer-Verlag.

Volume 24, Number 1



