
A METAMODEL FOR THE RUNTIM E
ARCHITECTURE OF AN INTERACTIVE SYSTE M

The UIMS Tool Developers Workshop *

1 .0 INTRODUCTION

Developers of interactive systems must make difficult engi-
neering trade-offs in order to optimize their developmen t
processes and end products . The trade-offs are made amon g
desirable, but sometimes conflicting, goals such as minimiz-
ing the future effects of changing technology and improvin g
system runtime performance. The purpose of this paper i s
to provide developers with a framework for understandin g
these tradeoffs and for helping them define and evaluate
candidate runtime architectures.

*
This paper is the product of a number of meetings of use r

interface tool developers. We found available models of the
runtime architecture of an interactive system inadequate for
our purposes, and we defined both a model and a meta -
model . This work was discussed at the CHI '91 UIMS Tool
Developers' Workshop (see the companion paper in thi s
issue) and presented at the CHI '91 Special Interest Group ,
User Interface Developers' Workshop Report : Seeheim
Revisited. The discussion below is an updated version of
the work presented in those sessions . The contributing
authors are : Len Bass, Software Engineering Institute; Ros s
Faneuf, Digital Equipment Corporation ; Reed Little, Soft-
ware Engineering Institute ; Niels Mayer, Hewlett-Packard
Laboratories ; Bob Pellegrino, Digital Equipment Corpora-
tion ; Scott Reed, V. I . Corporation; Robert Seacord, Soft -
ware Engineering Institute; Sylvia Sheppard, NASA; and
Martha R . Szczur, NASA. For more information, contac t
the authors at : chiuidt@sei.cmu.edu.

1 .1 Models and Metamodel s

A number of models exist for the design of user interfac e
systems . Some of the more familiar ones are the Seeheim
model (Green ; Pfaff & ten Hagan), the Seattle model (Lantz
et al .), the Lisbon model (Duce et al ., eds .), and MVC
(Krasner & Pope) and its more modern successor PAC
(Coutaz) . A common approach for developing such models
is to examine the functionality of an interactive system ,
decide that separating the user interface functionality fro m
other functionality is the most important design goal, an d
derive an architecture that supports this separation . The
product of this approach is a prescriptive model for an inter -
active system. Although prescriptive models are desirable ,
it seems clear from the variety of prescriptive models avail -
able and the lack of consensus about which is the best that a
single, prescriptive model to fit all types of interactive sys-
tems is very difficult, if not impossible, to define .

Coutaz and Balbo (1991) take a different approach . They
do not propose a particular architecture . Instead, these
authors examine the nature of the data that passes betwee n
the user interface and the non-user-interface portions of a n
interactive system.

During a series of workshops in 1990 and 1991, w e
expanded upon the approach of Coutaz and Balbo. We
began by analyzing the data exchanges and the internal
functions of interactive systems . This analysis led to the
definition of a model of the runtime architecture of an inter -
active system, the Arch model. The model was tailored to
satisfy our particular goal of minimizing the future effect s

SIGCHI Bulletin

	

January 1992

	

32

	

Volume 24, Number 1



of changing technology (e .g ., buffering the remainder of th e
system from the effects of evolving Interaction Toolkits).

Although this particular architectural model satisfies our
goal of buffering from the effects of change, it does not sat-
isfy other goals (e .g ., maximizing runtime performance) . In
fact, we contend that no single architecture will satisfy all o f
the possible goals that developers can have in designin g
interactive systems. Thus, we introduce the idea of a meta-
model with two purposes : to derive any number of architec-
tures, depending upon a particular developer's goals, and t o
evaluate any proposed architecture in terms of desire d
goals .

In the remainder of this paper we define some terminology ,
list potential design criteria, consider the functionalitie s
essential to an interactive system, and present the Arch
model and the Slinky metamodel .

1 .2 Terminolog y

The term "application" has several meanings . We define an
application to be the total system that is developed for its
end users . An interactive application consists of application
domain software and user-interface software . The applica-
tion domain, or simply the domain, is the field of interest of,
and reason for, the application (e .g ., producing a payroll or
calculating the orbit of a satellite) .

A user interface runtime system (UIRS) is defined to be the
run-time environment of the interactive application . A user
interface toolkit is a collection of interaction object classes
employing specific interaction media with associated man-
agement capabilities (e.g ., Motif m and OpenL ookTM ) .

2.0 CRITERIA FOR DESIG N

Design goals can be expressed in terms of criteria for evalu-
ating either the end product or the development process .
The following list is not exhaustive but does include som e
of the more common criteria to be considered when design-
ing an interactive system :

• target system performance:
- siz e
- speed

• productivity of system development tool(s )
• buffering from changes in :

- application domai n
- medium
- hardware platform
- interaction toolkit

• conceptual simplicity
• reuse of code
• meeting functional requirements
• quality of resulting user interfac e
• cost of:

- development system

- target system
• complexity of specification
• time for target system to reach its end user (or the

commercial marketplace)
• developers' abilitie s
• target system extensibility
• adherence to standard s
• compatibility with other systems
• complexity of application data
• complexity of dialogue requirement s

A given architectural design will satisfy one set of criteria ;
other designs will emphasize the satisfaction of other crite-
ria . A developer can rank the criteria, determining which
are most important to his goals . (Some of the criteria are
not affected by architectural considerations ; they are
included for completeness.)

3 .0 FUNCTIONALITY OF AN INTERACTIVE SYSTEM

Regardless of the criteria selected as most important, al l
designs must provide a certain set of functionalities . This
section discusses the data representations and the function s
necessary in an interactive system .

There are at least three types of data representations used i n
an interactive system : representations of the domain data
(e .g ., names and types in a data base system), representa-
tions of the media used for input/output (e .g ., pixels for the
output to a bit-mapped system) and intermediate representa-
tions (e .g ., "tabular, labelled, two column data with single
entry selection") . Data flows bi-directionally between th e
domain-specific parts of the system and the input/outpu t
media. Data that are expressed in the domain representatio n
are changed (via reorganizations, transformations, aggrega-
tions, decompositions, additions, and/or deletions) until at
some point they have media representations, and data tha t
are expressed in the media representation are changed to
have internal representations .

Several types of actions require control and sequencing .
There is the sequencing of end-user, task-level actions, th e
sequencing of domain-specific actions, and the sequencing
required for the input/output media .

With these high-level requirements in mind, we consider th e
following to be necessary operations for every interactiv e
system :

• control, manipulate and retrieve domain data and perfor m
other domain tasks

• reorganize domain data for user interface purpose s
• provide task level sequencing
• provide multiple view consistenc y
• make media decisions
• choose the interaction object s
• provide physical interaction with the end use r
• convert between domain formalisms and user interfac e

formalisms

SIGCHI Bulletin

	

January 1992

	

33

	

Volume 24, Number 1



Different systems place different degrees of emphasis on
each function, but every interactive system must perfor m
these functions in some manner. There are, of course, other
functions that are important in a modem, well designed sys-
tem (e .g ., detection and reporting of semantic errors, pro-
viding help messages), but some interactive systems exis t
without providing these additional functions .

4.0 THE ARCH MODEL AND THE SLINKY METAMODE L

Of the criteria listed in Section 2, buffering an operationa l
system from changes in technology was selected as mos t
important in our discussions. After listing the functions
described in Section 3, we developed a model architectur e
to insure that our criterion would be met . The next section
discusses the model.

4 .1 The Arch Mode l

User interface developers sometimes find both the applica-
tion domain functionality and the UI toolkit(s) to be existin g
constraints upon the development of a user interface . The
user interface software must manage the interaction
between these two externally-provided components (e .g . ,
between a DBMS and X Windows) . For this reason, the
domain software and the UI toolkits form the two bases of

the Arch model . Other essential functionality is provided b y
three additional components, the Dialogue, Presentation and
Domain-Adaptor components. We defined these five com-
ponents of the model by allocating the functionalities enu-
merated in Section 3 :

Domain-Specific Component - controls, manipulates and
retrieves domain data and performs other domain-relate d
functions .

Interaction Toolkit Component - implements the physica l
interaction with the end-user (via hardware and software) .

Dialogue Component - has responsibility for task-level
sequencing, both for the user and for the portion of th e
application domain sequencing that depends upon the user ;
for providing multiple view consistency ; and for mapping
back and forth between domain-specific formalisms and
user-interface-specific formalisms .

Presentation Component - a mediation, or buffer, compo-
nent between the Dialogue and the Interaction Toolkit Com-
ponents that provides a set of toolkit-independent objects
for use by the Dialogue Component (e .g ., a "selector" objec t
that can be implemented in the toolkit using either a men u
or radio buttons) . Decisions about the representation o f
media objects are made in the Presentation Component .

Domain
Objects

Domain
Adaptor-

Component

r

Dialogue
Component

Presentatio n
Objects

Presentation
Component

Domain Object s

Domain -
Specific

Component

Interaction Objects

Interaction
Toolkit

Component

Figure 1 . The interfaces between the components

SIGCHI Bulletin

	

January 1992

	

34

	

Volume 24, Number 1



Domain-Adaptor Component - a mediation component
between the Dialogue and the Domain-Specific Compo-
nents . Domain-related tasks required for human operatio n
of the system, but not available in the Domain-Specific
Component, are implemented here. The Domain-Adaptor
Component triggers domain-initiated dialogue tasks, reor-
ganizes domain data (e .g., collects data items in a list), and
detects and reports semantic errors .

Figure 1 shows [he components and the types of objects that
cross the boundaries between them . Note that the term
"object" is used to indicate the formalism that transmit s
information between the components . The term does not
refer to the formal, instantiated objects defined for object -
oriented developments . Rather, objects are used here as an
expository abstraction for describing communication mech-
anisms.

Domain Objects are employed by both the Domain-Specific
and the Domain-Adaptor Components, but instances o f
these objects are created by the two components for differ-
ent purposes . In the Domain-Specific Component, Domain
Objects employ domain data and operations to provid e
functionality not associated directly with the user interface.
In the Domain-Adaptor Component, domain data and oper-
ations are used to implement operations on domain data tha t
are associated with the user interface . For example, on e
domain-specific operation of a DBMS would retrieve a se t
of employee names and salaries by gender from a data base .
Iterative review of the list to display parts of succeeding
records might need to be done in a Domain-Adaptor Com-
ponent . Here the Domain-Adaptor Component would sup-
plement the functionality of the Domain-Specific
Component by providing a service related to the presenta-
tion of information .

Presentation Objects are virtual interaction objects that
control user interactions . Presentation Objects include data
to be presented to the user and events to be generated by the
user. The medium used in the presentation or event genera-
tion is not defined . An example of a Presentation Object fo r
use with the list of employees and salaries is "tabular ,
labelled, two column data with single entry selection" .

Interaction Objects are specially designed instances of
media-specific methods for interacting with the user . Inter-
action Objects are supplied by the Interaction Toolkit soft -
ware and may be primitive (e .g ., graphics and keyboard
device drivers) or complex . An Interaction Object corre-
sponding to the Presentation Object cited in the paragrap h
above is a dual bank of radio buttons (which allows the user
to select an employee with a particular salary from the
"male" column or the "female" column) .

4 .2 Shifting Functionalltles and the Slinky Metamode l

The coupling of functionalities in the components of th e
Arch model described above was designed to minimize th e
effects of future changes in the interaction toolkit, the user

interface dialogue or the application domain . Dissimilar
functions were assigned to separate components in order t o
allow the modification of one type of functionality wit h
minimal impact on other components in the system . One
result of this allocation is that the model does not satisfy al l
of the criteria listed in Section 2 . As discussed above, a
model derived to minimize the effects of changing technol-
ogy may have an adverse effect on the speed of the runtime
system. A single model cannot satisfy conflicting criteria .

We need an architecture that can be tailored to emphasize
the criteria of choice . The Arch model can be generalized
for this purpose . The term "Arch" suggests the more stabl e
development environment that occurs when goals have been
set and choices have been made . When we generalize the
Arch model, we refer to it as the Slinky metamodel . The
metamodel provides a set of Arch models, as opposed to on e
particular model (Figure 2) .

The term "Slinky" was selected to emphasize that function-
alities can shift from component to component in an archi-
tecture depending upon the goals of the developers, thei r
weighting of development criteria, and the type of system to
be implemented . This concept is loosely represented by th e
flexible SlinkyTm toy. (When in motion, the Slinky toy ha s
a dynamically shifting mass.) The graphical representatio n
of the Arch models with varying size components in Figur e
2 is meant to convey the concept of models with compo-
nents that contain varying amounts of functionality .

To clarify the concept of shifting functionalities, consider a n
example where a function in a Domain-Specific Componen t
was later implemented in an Interaction Toolkit . The Unix
file system was originally considered a specific application
domain, with file operations such as "open" and "delete" .
When the interaction toolkit became more sophisticated, a
file selection widget was included in the toolkit, thus shift-
ing the functionality from one end of the model architectur e
to the other.

Consider a second example where the requirement is to tak e
the temperature of a vessel and display the value to the en d
user graphically and textually . We could allocate the func-
tions as follows :

Domain-Specific Component : Sense temperature of vesse l
in Kelvin .

Domain-Adaptor Component: Create temperature object.

Dialogue Component : Request temperature from Domain -
Adaptor Component, and create presentation object wit h
value units.

Presentation Component: Present value as slider an d
present units as text .

Interaction Toolkit: Display toolkit objects .

There are other ways to allocate these functions, represent-
ing a shift in the functionality assigned to the components .
The reallocation is left as an exercise for the reader .

SIGCHI Bulletin

	

January 1992

	

35

	

Volume 24, Number 1



Slinky Metamodel

Arch Models

Figure 2 . Derivation of the Arch Models from the Slinky Metamodel

4 .3 Shifting Emphase s

In addition to shifting functionalities, Arch models can var y
because of the type of application . Applications with com-
plex domain data will have more capabilities to store ,
retrieve, reorganize, and transport data among the compo-
nents of the architecture . Applications with complex user
interaction requirements will have more capabilities tha t
support task sequencing, management of multiple views o f
data, and responses to user actions. All user interface runt-
ime systems must provide capabilities for both data manipu-
lation and user interaction, but most systems emphasize on e
type more than the other.

Data-oriented systems have extensive facilities for manag-
ing information flow, often with minimal dialogue capabili-
ties . These systems typically concentrate on the
information being viewed and manipulated by the user.
They often have standard mappings from data records t o
interface representations . These systems are characterized
by :

• complex data structures as a major portion of the object s
that cross the boundaries between components,

• extensive facilities for specifying structural transforma-
tions and for naming and retaining the identity of dat a
aggregates and their elements, and

• facilities (such as a data definition language) for extendin g
the set of data types and for mapping easily to popula r
database systems or data dictionaries.

Much of the functionality in these systems is concentrate d
in the Domain-Specific and Domain-Adaptor Components .
Examples of data-oriented tools include commercial, forms -
based products (particularly those with workstation inter -
face support) and 4GL systems for accessing and maintain-
ing commercial databases (e .g ., OMNIS 5) .

Dialogue-oriented systems have extensive capabilities for
mapping user actions into the behavior of the interface -
managing windows, controlling appearance, choosing dif-
ferent techniques for representing the same information, etc .
Dialogue-oriented systems are characterized by :

• the provision of a specialized language, production sys-
tem, or equivalent for mapping user events into domain
actions, where the language syntax and expressive focu s
are oriented towards human/computer interaction ,

SIGCHI Bulletin

	

January 1992

	

36

	

Volume 24, Number 1



• a tendency to model domain events in the same terms as
user events, and

• simple data interchange models (e .g ., the use of shared
program variables for communication) .

These systems focus primarily on the Dialogue, Presenta-
tion, and Interaction Toolkit components of the UIRS.
Examples of tools to support dialogue-oriented applications
include most of the current Unix-based UIRSs, such as Ser-
pent (Bass & Coutaz) and TAE (Szczur) .

4 .4 Applying the Slinky Metamode l

The Slinky metamodel provides a context in which interac-
tive architectures can be discussed in terms of desired crite-
ria . Two ways of using the metamodel are : a) to derive an
Arch model based on a desirable set of criteria and b) to
evaluate a candidate architecture to determine if it satisfies a
particular set of desirable criteria .

To construct an Arch model, select the criteria of interest ,
identify the needed functionalities, identify the interactio n
objects, and decide how to package the functions into com-
ponents . Each design criterion enumerated in Section 2 can
be analyzed for its architectural implications in terms of the
functionalities enumerated in Section 3 . Although this is a
subjective process, it's not a difficult one . There are know n
effects for many of the criteria . For example, for the Arc h
model where the overriding criterion is the efficient an d
robust management of change, modular separation of func-
tionality is important because of the need for the developer s
to deal with the continual, rapid infusion of new technology
over the life cycle of an application. If system performance
is the overriding criterion, one can imagine less emphasi s
being placed on Dialogue and Domain-Specific Compo-
nents . Rather, data values may be passed more directly
from the Domain-Specific Component to the Presentatio n
Component .

The Slinky metamodel may also be used as an evaluation
mechanism for a proposed architecture . The process is to
select a criterion, derive the appropriate Arch model, an d
then compare the distribution of functionalities within the
Arch model to the distribution of functionalities in the pro -
posed architecture . If the functionalities of the propose d
architecture have components that cross the boundaries o f
the Arch components, the proposed architecture is not suit -
able for the satisfying the criterion.

Although we have made some progress in this activity, it
clearly is not finished . Future plans include the develop-
ment of a matrix allocating functionality to the component s
of the metamodel for each criterion and a discussion of th e
tools needed to create and maintain each component of th e
architecture.

5.0 SUMMARY

Developers of interactive systems often have conflictin g
software engineering goals. In order to make informed
judgements about the trade-offs involved in meeting thes e
goals, a software designer needs: an understanding of all of
the functionalities involved in an interactive system, a n
understanding of the significance of his goals in terms of th e
runtime architecture, and an understanding of how a pro-
posed allocation of the functionalities supports the desire d
goals . This paper provides guidance for developing an d
evaluating user interface architectures in terms of develop-
ers' goals and the functionalities required .

6.0 REFERENCES

Bass, L. & Coutaz, J . (1991) . Developing Software for th e
User Interface . Reading, MA: Addison-Wesley.

Coutaz, J . (1987) . PAC, an implementation model for dia-
log design . Proceedings of HCI Interact 87, 431 - 436 .
Amsterdam: North-Holland .

Coutaz, J . & Balbo, S . (1991) . Applications: A dimension
space for user interface management systems . CHI '91
Conference Proceedings, 27-32. New York: ACM .

Green, M . (1985) . The University of Alberta user interfac e
management system. Computer Graphics, 19, 3, 205-213 .

Krasner, G . E . & S . T. Pope . (1988) . A cookbook for usin g
model-view-controller user interface paradigm in Small-
talk-80 . Journal of Object Oriented Programming, 1,3, 26-
49 .

Lantz, K. A., Tanner, P. P., Binding, C ., Huang, K . T., &
Dwelly, A. (1987) . Reference models, window systems an d
concurrency. Computer Graphics, 21, 2, 87-97 .

OMNIS 5 Application Designers ' Handbook for IBM and
Compatibles . (1990) . Foster City, CA: Blyth Software .

Pfaff, G . & ten Hagan, P. J . W. (1985) . Seeheim Workshop
on User Interface Management Systems. Berlin : Springer-
Verlag .

Szczur, M. R. (1991). TAE Plus: a NASA productivity too l
used to develop GUIs . Proceedings of the AIM Computin g
in Aerospace Conference (in press) . Baltimore, MD: AIAA .

User Interface Management and Design (1991) . In D . A .
Duce, M. R. Gomes, F. R . A. Hopgood, J . R . Lee (eds.) .
Eurographic Seminars, 36-49. Berlin : Springer-Verlag .

SIGCHI Bulletin

	

January 1992

	

37

	

Volume 24, Number 1


